Labor Supply and Taxes: A Survey

Michael P Keane
Labor Supply and Taxes: A Survey

by

Michael P. Keane
University of Technology Sydney
Arizona State University

May 2010

Abstract: I survey the male and female labor supply literatures, focusing on implications for effects of wages and taxes. For males, I describe and contrast results from three basic types of model: static models (especially those that account for nonlinear taxes), life-cycle models with savings, and life-cycle models with both savings and human capital. For women, more important distinctions are whether models include fixed costs of work, and whether they treat demographics like fertility and marriage (and human capital) as exogenous or endogenous.

The literature is characterized by considerable controversy over the responsiveness of labor supply to changes in wages and taxes. At least for males, it is fair to say that most economists believe labor supply elasticities are small. But a sizeable minority of studies that I examine obtain large values. Hence, there is no clear consensus on this point. In fact, a simple average of Hicks elasticities across all the studies I examine is 0.30. Several simulation studies have shown that such a value is large enough to generate large welfare costs of income taxation.

For males, I conclude that two factors drive many of the differences in results across studies. One factor is use of direct vs. ratio wage measures, with studies that use the former tending to find larger elasticities. Another factor is the failure of most studies to account for human capital returns to work experience. I argue that this may lead to downward bias in elasticity estimates. In a model that includes human capital, I show how even modest elasticities – as conventionally measured – can be consistent with large welfare costs of taxation.

For women, in contrast, it is fair to say that most studies find large labor supply elasticities, especially on the participation margin. In particular, I find that estimates of “long run” labor supply elasticities – by which I mean estimates that allow for dynamic effects of wages on fertility, marriage, education and work experience – are generally quite large.

Acknowledgements: This research has been support by Australian Research Council grant FF0561843 and by the AFTS Secretariat of the Australian Treasury. But the views expressed are entirely my own. An early version was presented at Australia’s Future Tax and Transfer Policy Conference (June 18, 2009).
I. Introduction

The literature on labor supply is one of the most extensive in economics. There are many reasons why the topic is of such great interest. One key reason is that understanding the responsiveness of labor supply to after-tax wages and transfers is crucial for the effective design of tax/transfer systems, and for assessing the welfare costs of labor income taxation. Thus, it is not surprising that much of the literature on labor supply focuses on how taxes on labor earnings affect peoples’ decisions about hours of work. Given the importance of this issue, I will survey the labor supply literature with a particular focus on what it implies about the elasticity of labor supply with respect to wages and taxes.¹

Unfortunately, there is no clear consensus on this issue. Indeed, the labor supply literature is characterized by a number of sharp controversies, many of which revolve around the magnitudes of labor supply elasticities, and the methods used to estimate them. At least for men, it is fair to say that the majority of studies find rather small elasticities with respect to after-tax wage rates. This, in turn, implies that the welfare losses from taxation are small. But, as we’ll see, a sizeable minority of studies makes a strong case for larger elasticities, and larger welfare losses. I will admit up front that my sympathies are with the minority group. My own judgment is that many prior studies have obtained male labor supply elasticities that are likely biased towards zero. I will explain why I think this is so, while at the same time attempting to present as balanced a view of the literature as possible.

For women, in contrast, most studies have found rather large labor supply elasticities, especially on the participation margin. This is particularly true of studies that allow for long-run dynamic effects of wages on fertility, marriage, education and work experience.

My hope is for this survey to be accessible to a wide audience, so I have tried to keep the mathematical level as basic as possible. It is a challenge to convey the key issues with as little reliance on Bellman equations and other such mathematical niceties as possible. I have probably not quite succeeded when discussing some of the more complex dynamic models. Still, I think I have managed to explain some difficult issues (e.g., the so-called “Hausman-MaCurdy controversy” over nonlinear budget constraint models, the Altug-Miller discussion of aggregate shocks) in a fairly simple way. An auxiliary goal of this survey is to provide a simple explanation of dynamic programming methods for estimation of dynamic models. I think I achieve a simpler exposition here than I have managed elsewhere.

¹ Labor supply elasticities also play a key role in business cycle models, where they govern the extent to which fluctuations in real wages over the cycle can explain movements in hours and employment. Understanding labor supply behavior is important in the design of public welfare programs, where the goal is typically to provide income support in such a way as to minimize work disincentives. One could list other important applications.
The survey is organized as follows: Section II gives a short summary of the optimal tax literature, to motivate why labor supply elasticities are so important. Next, Section III describes standard models of labor supply. I discuss static and dynamic models, and the three main elasticity concepts (Marshall, Hicks and Frisch). Section IV discusses, in a general way, the main econometric problems that arise in attempting to estimate these models.

Section V surveys empirical results on male labor supply. It is divided into three parts. Section V.A covers “static” models that consider only choice of work hours but take assets and human capital as given. Section V.B covers “life-cycle” models that incorporate saving. Section V.C covers life-cycle models that also account for human capital. Section VI gives a summary of results on female labor supply. Finally, Section VII concludes.

II. Labor Supply and Optimal Taxation

One of the main reasons for interest in labor supply elasticities is that they play a key role in the design of tax systems. So, by way of motivation, it is important to understand why. Therefore, I’ll start with a brief and informal summary of the “optimal taxation” literature, pioneered by Mirrlees (1971). The optimal tax literature starts with two key problems:

1) Government needs revenue to pay for public goods (e.g., education, health care, defense forces), income support for the poor, and other desirable programs.

2) The use of labor income taxation to raise revenue causes people to work less. This leads to a decline in overall economic output (generating an efficiency or welfare loss).

There is clearly a tradeoff between the desirable government services that income taxation can fund, and the undesirable negative impact of taxation on labor supply. Mirrlees (1971) developed mathematical models of this tradeoff, and used then to derive optimal levels of taxation and government spending. His basic conclusion was that the welfare costs of taxation are greater to the extent that the “shrinking pie” problem (2) is more severe. The more elastic is labor supply to after-tax wages, the lower is the optimal tax rate.

To give a concrete example, consider a progressive income tax, and suppose we want to choose the optimal tax rate for the top income bracket. To simplify, assume the top bracket is sufficiently high that government (or society) places no value whatsoever on an extra dollar of income for those people in it. The government’s only goal is to raise as much revenue from them as possible. In this case, Saez, Slemrod and Giertz (2009) give the following simple formula for the revenue maximizing top bracket tax rate, which I denote \(\tau \):

\[
\tau = \frac{1}{1 + a \cdot e}
\]

Here \(e \) is the labor supply elasticity (i.e., the % increase in labor supply that accompanies a
1% increase in after-tax wage rate $w(1-\tau)$, where w is the pre-tax wage),\(^2\) and a is the “Pareto parameter,” an (inverse) measure of income dispersion within the top bracket.

Specifically, a is defined as $a = zm/(zm - z)$, where z is the income level where the top bracket starts, and zm is the average income of people in the top bracket. For example, if the top bracket starts at $500,000$, and average income in that bracket is $1,000,000$, then $a = 1/(1-0.5) = 2$. In contrast, if average income in the top bracket is $2,000,000$ (implying more dispersion/inequality) we would have $a = 2/(2-0.5) = 1.33$. As $zm \to \infty$, meaning inequality becomes extreme, a approaches its lower bound of 1. From (1), we see that the optimal top bracket rate *increases* if there is more inequality in the top bracket (i.e., a smaller value of a).

Quite a few papers have estimated the Pareto parameter for many different countries, using different points for the top bracket cutoff. There is a great deal of consistency in the estimates: it is generally found that a is stable and in the vicinity of 2 for income levels where the top bracket rate would typically apply. For example, Saez (2001) looks at U.S. tax return data from 1992-3 and finds that that a is stable at about 2 for income levels above $150,000$. For the U.K., Brewer, Saez and Shepard (2008) report a value of 1.67.

Now, consider what equation (1) implies for the optimal top bracket tax rate given different values of the labor supply elasticity e and the Pareto parameter a:

Table 1: Optimal Top Bracket Tax Rates for Different Labor Supply Elasticities

<table>
<thead>
<tr>
<th>Labor Supply Elasticity (e)</th>
<th>Optimal Top-Bracket Tax Rate (τ)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$a=1.67$</td>
</tr>
<tr>
<td>2.0</td>
<td>23%</td>
</tr>
<tr>
<td>1.0</td>
<td>37%</td>
</tr>
<tr>
<td>0.67</td>
<td>47%</td>
</tr>
<tr>
<td>0.5</td>
<td>54%</td>
</tr>
<tr>
<td>0.3</td>
<td>67%</td>
</tr>
<tr>
<td>0.2</td>
<td>75%</td>
</tr>
<tr>
<td>0.1</td>
<td>86%</td>
</tr>
<tr>
<td>0.0</td>
<td>100%</td>
</tr>
</tbody>
</table>

Note: These rates assume the government places essentially no value on giving extra income to the top earners.

Table 1 reveals quite strikingly how sensitive the optimal top bracket tax rate is to the labor supply elasticity. Take the $a = 2.0$ case. If the elasticity is only 0.2, then the optimal top rate is a very high 71%. But if the elasticity is 2.0, the optimal top rate is only 20%.

\(^2\) At this point I abstract from the fact that there are multiple definitions of the labor supply elasticity, depending on what is held fixed as wages vary. This is discussed in the next section. Later we’ll see that, in a static model, it is the Hicks elasticity concept that is relevant for determining the optimal top bracket rate.
Recall that Table 1 assumes the government places no value on additional income for people in the top bracket: its only goal is revenue extraction. But with a top rate of 100%, there would be no incentive to earn income above level z, and revenue collection from the top bracket would (in theory) be zero. Thus the revenue maximizing tax rate is generally less than 100%. The one exception, as we see in Table 1, is if labor supply is totally inelastic ($e=0$). It is also worth noting that, if the government does place some value on marginal income for high earners, optimal top bracket rates would be lower than those presented in Table 1.³

For a flat rate tax system (i.e., a system with no brackets, and a single flat rate tax on all income starting at 0), we would have $z = 0$ and $a = z_m/z_m = 1$. Then, if the government’s goal is purely revenue maximization, equation (1) reduces to simply:

$$
\tau = 1/(1+e)
$$

It is also simple to derive (2) directly. Let h denote hours of work, and assume that $\ln(h) = e\cdot\ln(w(1-\tau))$, so e is the labor supply elasticity. Then $h = [w(1-\tau)]^e$. Let R denote tax revenue. We have $R = (wh)\tau = w[w(1-\tau)]^e\cdot\tau$. It is instructive to look at the derivative of R with respect to τ, which is $dR/d\tau = w[w(1-\tau)]^e - ew^2[w(1-\tau)]^{e-1}\cdot\tau$. This first term, which is positive, is the mechanical effect of the tax increase, holding labor supply fixed. The second term, which is negative, is the behavioral effect: the loss in revenue due to reduced labor supply. Setting this derivative equal to zero and solving for the revenue maximizing τ gives equation (2).

Using equation (2), Table 2 column 2 gives optimal (revenue maximizing) flat-tax rates for different values of the labor supply elasticity e. ⁴ As in Table 1, the optimal rate falls sharply as the elasticity increases. For instance, if $e=0.5$, the revenue maximizing flat rate is a very high 67%. But if $e=2.0$, the revenue-maximizing rate is only 33%.

Notice that, because a is smaller in Table 2 than in Table 1 (i.e., $a = 1.0$ vs. 1.67 or 2.0), the tax rates in Table 2 are generally higher than those in Table 1. This may seem surprising, given that we are now considering a flat rate tax, as opposed to a top bracket tax. It should be recalled, however, that the models in the optimal tax literature assume taxes are used largely to finance income inequality reducing transfers. Under the flat rate scheme in Table 2, low to middle income tax payers pay high rates, but also receive large transfers.

³ Suppose the government (or society) places a value of g on a marginal dollar of income for a person in the top bracket. If society has egalitarian preferences, then $1>g\geq0$. In that case, and assuming for simplicity that all government revenue is used for redistribution (i.e., there is no minimum tax level needed to provide essential services), Brewer, Saez and Shepard (2008) show that (1) becomes $\tau = (1-g)/(1-g+a\cdot e)$. Thus, we see that for $g<0$ the tax rates in Table 1 would be reduced. Table 1 of course corresponds to $g=0$.

⁴ I again abstract from the fact that there are multiple labor supply elasticity concepts. As we’ll see later, for a flat rate tax the relevant concept depends on what is done with tax revenue. In a static model where the revenue is returned to the population in the form of lump-sum transfers, it is again the Hicks elasticity concept that is most relevant. But if the revenue is thrown away, it is the Marshallian elasticity concept that is relevant.
Table 2: Revenue Maximizing Flat Tax Rates given different Labor Supply Elasticities

<table>
<thead>
<tr>
<th>Elasticity (e)</th>
<th>Optimal Tax Rate (τ)</th>
<th>g=0</th>
<th>g=0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>33%</td>
<td>20%</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td>50%</td>
<td>33%</td>
<td></td>
</tr>
<tr>
<td>0.67</td>
<td>60%</td>
<td>43%</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>67%</td>
<td>50%</td>
<td></td>
</tr>
<tr>
<td>0.3</td>
<td>77%</td>
<td>63%</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>83%</td>
<td>71%</td>
<td></td>
</tr>
<tr>
<td>0.1</td>
<td>91%</td>
<td>83%</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>100%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Now, suppose the government does not only seek to maximize revenue. Instead, it places a value of g cents on a marginal dollar of private after-tax income. Then Brewer, Saez and Shepard (2008) show that (1) becomes \(\tau = \frac{1-g}{1-g+ae} \). Given \(a=1 \) and \(g=0.5 \) we obtain the figures in Table 2 column 3. Not surprisingly, optimal tax rates fall. But more interesting is that rates become even more sensitive to the labor supply elasticity.

Both Tables 1 and 2 illustrate the key role of labor supply elasticities in determining optimal tax rates. With this background in mind, I turn to a review the empirical evidence on the magnitudes of labor supply elasticities. But before beginning it is worth giving a brief summary of the discussion. It is fair to say that, regardless of which of the various definitions of the labor supply elasticity you use, the majority of the economics profession – whether accurately or not – believes labor supply elasticities are fairly small (i.e., well below 0.50). This majority view is summed up nicely in a recent survey by Saez, Slemrod and Giertz (2009), who state: “... optimal progressivity of the tax-transfer system, as well as the optimal size of the public sector, depend (inversely) on the … elasticity of labor supply With some exceptions, the profession has settled on a value for this elasticity close to zero… In models with only a labor-leisure choice, this implies that the efficiency cost of taxing labor income … is bound to be low as well.” This view implies, for instance, that the optimal top-bracket tax rate is toward the high end of the figures given in Table 1.

The majority of the studies that I review in Sections V.A (static models) and V.B (life cycle models) do indeed produce results consistent with the view that labor supply elasticities are small. However, I think it is premature to say there is clear consensus on this issue for two reasons: First, as we’ll see, many well-executed papers in the static and life-cycle literatures do generate reasonably large elasticity estimates. My review of the literature leads me to conclude the extent of agreement among existing studies is not so great as the conventional
wisdom would suggest. Second, and perhaps more important, in Section V.C I show how, in a model with human capital, conventional econometric methods tend to seriously understate labor supply elasticities. Hence, accounting for human capital leads to a conclusion that labor supply elasticities may be higher than the conventional wisdom suggests.

III. Basic Models of Labor Supply

Before discussing the empirical literature on labor supply, it is necessary to lay out the theoretical framework on which it is based. Labor supply models can be broadly classified into two main types, static and dynamic. There are many variations within each type, but for our purposes this simple division will prove useful.

III.A. The Basic Static Labor Supply Model

In the basic static model, utility in period t depends positively on consumption C_t and leisure.5 Alternatively, it is often convenient to write that utility depends negatively on hours of work, h_t. Consumption is given by the static budget constraint $C_t = w_t(1-\tau)h_t + N_t$, where w_t is the (pre-tax) wage rate, τ is the tax rate on earnings, and N_t is non-labor income.6

In order to give a concrete exposition of the model it is useful to choose a particular utility function. Furthermore, to facilitate comparison of static vs. dynamic models, it will be useful to exposit each using the same utility function. The following utility function is very commonly used in the literature on life-cycle models, primarily because it is very convenient:

$$U_t = \frac{C_t^{1+\eta}}{1+\eta} - \beta_t \frac{h_t^{1+\gamma}}{1+\gamma} \quad \eta \leq 0, \ \gamma \geq 0$$

Here, utility has a CRRA form in consumption, and the disutility of labor is convex in hours of work. The parameter β_t captures tastes for leisure, which may change over time. The reason (3) is so convenient is that, as we will see below, the single parameter γ governs the strength of substitution effects, while η governs the strength of income effects.

In contrast to dynamic models, for static models it is hard to point to a utility function that is so generally used as (3). This is because in static models it is often more convenient to specify a labor supply function directly. Indeed, it is a bit awkward to exposit the static model using equation (3), but I think this approach is justified by the comparability so achieved.

The static model can be viewed as a special case of a dynamic model where three key sources of inter-temporal linkage have been shut down: First, workers do not borrow or save,

5 The definition of a “period” in labor supply models is somewhat arbitrary. In empirical work it is often chosen to be a year, although shorter periods are sometimes examined.

6 So as to focus on earnings taxes I ignore taxes on non-labor income. N_t might be interpreted as after-tax non-labor income, or as a tax-free transfer. The key thing is that we want to consider changes in τ holding N fixed.
so current consumption is simply equal to current after-tax income.\(^7\) Second, human capital accumulation is ignored. That is, workers decide how much labor to supply today based only on today’s wage rate. They do not consider the possibility that working more today may increase future wages (via accumulation of work experience). Third, history dependence in preferences is ignored. Alternatively, the static model can be viewed as a special case of a dynamic model where one or more of these inter-temporal linkages do exist, but where workers are myopic and ignore them when deciding on current labor supply.\(^8\)

To solve the static model for optimal hours of work, we use the budget constraint to substitute for \(C_t\) in equation (3), and take the derivative with respect to hours, obtaining:

\[
\frac{dU_t}{dh_t} = \left[w_t(1-\tau)h_t + N_t\right]^\eta w_t(1-\tau) - \beta_t h_t^\gamma = 0
\]

This can be reorganized into the familiar marginal rate of substitution (MRS) condition:

\[
(5) \quad \text{MRS} = \frac{MUL(h)}{MUC(h)} = \frac{\beta_t h_t^\gamma}{\left[w_t(1-\tau)h_t + N_t\right]^\eta} = w_t(1-\tau)
\]

Equation (5), one of the most basic in economics, says to choose hours so as to equate the marginal rate of substitution between consumption and leisure to the after-tax wage, \(w_t(1-\tau)\).

Of course, the MRS is the ratio of the marginal utility of leisure, \(\beta_t h_t^\gamma\) (the negative of the marginal disutility of hours), to the marginal utility of consumption, \(\left[w_t(1-\tau)h_t + N_t\right]^\eta\).

Unfortunately, equation (5) does not give a closed form solution for hours (this is presumably why it has not been a popular choice in the static literature). But by implicitly differentiating (5) we obtain that the “Marshallian” labor supply elasticity (also known as the “uncompensated” or “total” elasticity), which holds \(N_t\) fixed. It is given by:

\[
(6) \quad e = \frac{\partial \ln h_t}{\partial \ln w_t} \bigg|_{N_t} = \frac{1+\eta \cdot S}{\gamma - \eta \cdot S} \quad \text{where} \quad S = \frac{w_t h_t (1-\tau)}{w_t h_t (1-\tau) + N_t}
\]

Here \(S\) is the share of earned income in total income. If non-labor income is a small share of total income, then, to a good approximation, the Marshallian elasticity is simply \((1+\eta)/(\gamma-\eta)\).

Next we use the Slutsky equation to decompose the Marshallian elasticity into

\(^7\) One consequence of this assumption is that the static model has no explanation for the evolution of asset income. Non-labor income can only be sensibly interpreted as exogenous transfers.

\(^8\) Given such myopia, the worker has no reason to save for the future (i.e., he/she doesn’t consider future consumption) so all of current income is consumed and a static budget constraint would hold (even if saving were technically possible).
separate substitution and income effects. Recall that the Slutsky equation is:

\[\frac{\partial h}{\partial w} = \frac{\partial h}{\partial w_N} + h \frac{\partial h}{\partial N} \]

It is convenient to write the Slutsky equation in elasticity form, so the Marshallian elasticity appears on the left hand side. So pre-multiply equation (7) by \(w/h \), and multiply and divide the income effect term by \(N \), to obtain:

\[\frac{w}{h} \frac{\partial h}{\partial w} = \frac{w}{h} \frac{\partial h}{\partial w_N} + \frac{wh}{N} \left[\frac{N}{h} \frac{\partial h}{\partial N} \right] \]

The first term on the right is the “Hicks” or “compensated” labor supply elasticity. The second term is the income effect, which equals the elasticity of hours with respect to non-labor income, \(\frac{N}{h} \frac{\partial h}{\partial N} \), multiplied by \(S/(1-S) \). The income effect can also be written as \(\frac{w}{h} \frac{\partial h}{\partial N} \).

Again applying implicit differentiation to (5), we obtain that the income elasticity is:

\[e_I = \frac{\partial \ln h_N}{\partial \ln w_H} \bigg|_{N_t} = \frac{\eta}{\gamma - \eta \cdot S} (1 - S) \]

and the income effect is:

\[iE = \frac{w_t h_t (1 - \tau)}{N_t} e_I = \frac{S}{1 - S} \frac{\eta}{\gamma - \eta \cdot S} (1 - S) = \frac{\eta \cdot S}{\gamma - \eta \cdot S} < 0 \]

Note the income effect must be negative, as \(\eta < 0 \) and \(\gamma > 0 \) (which are conditions required for diminishing marginal utility of consumption and leisure). If non-labor income is a small share of total income, so \(S \approx 1 \), then, to a good approximation, the income effect is simply \(\eta/(\gamma - \eta) \).

It is intuitive that the magnitude of the negative income effect is increasing in the magnitude of the parameter \(\eta \). If \(\eta \) is a larger negative number it implies that the marginal utility of consumption diminishes more quickly as consumption increases. Thus, the tendency to reduce labor supply in response to an increase in non-labor income is greater.

Finally, using (6), (8) and (10), the Hicks elasticity is simply given by:

\[e_H = \frac{\partial \ln h_N}{\partial \ln w_H} \bigg|_{N_t} = e - iE = \frac{1}{\gamma - \eta \cdot S} > 0 \]

9 If \(S = 1 \) then the income elasticity \(e_I \) is of course equal to zero. (If \(N_t = 0 \) then a one percent increase in zero is still zero). But the income effect remains well defined, as the result in (10) can also be obtained directly by implicit differentiation of (5), rather than by using (8)-(9).
The Hicks elasticity must be positive, as \(\eta < 0 \) and \(\gamma > 0 \). Note that if non-labor income is a small share of total income then the Hicks elasticity is approximately \(1/(\gamma - \eta) \). Also note that, because \(\eta < 0 \), the Hicks elasticity in (11) must be greater than the Marshallian elasticity in (6). The two approach each other as \(\eta \to 0 \), in which case there are no income effects.\(^{10}\)

In the special case of \(N_t = 0 \), we can use (5) to obtain the labor supply equation:

\[
\ln h_t = \frac{1 + \eta}{\gamma - \eta} \ln [w_t(1 - \tau)] - \frac{1}{\gamma - \eta} \ln \beta_t
\]

From (12) we can see directly that the Marshallian labor supply elasticity is given by:

\[
e = \frac{\partial \ln h_t}{\partial \ln w_t (1 - \tau)} = \frac{1 + \eta}{\gamma - \eta}
\]

As \(\eta < 0 \) and \(\gamma > 0 \) the denominator in (13) must be positive. But aside from this, economic theory tells us little. It is possible for the numerator to be negative if \(\eta < -1 \). Then an increase in the wage reduces hours of work. Several of the studies I review below do find this. But most find \(1 + \eta \) is small and positive, so the Marshallian elasticity is also small and positive.

It is instructive to note the income effect \(ie \) in (8) can also be written as \(w(\partial h/\partial N) \) or \(\partial(wh)/\partial N \). For this reason Pencavel (1986) called it the “marginal propensity to earn” (mpe). That is, the income effect can be interpreted as the effect of an increase in non-labor income on labor income (i.e., Given an extra dollar of non-labor income, how much does a worker reduce his/her earnings?). As Pencavel notes, if both leisure and the composite consumption good \((C_t) \) are normal goods, then \(ie \) must be between 0 and –1. Indeed, we see from (10) that \(ie \) approaches –1 as \(\eta < 0 \) goes to negative infinity. But Pencavel (1986) argues that values of \(ie \) near –1 are implausible. Introspection suggests people would not react to an increase in non-labor income by reducing hours so sharply that total consumption does not increase.\(^{11}\)

Knowledge of both the income and substitution effects of an after-tax wage change is important for understanding the impact of changes in tax and transfer policy. For example, suppose we have a flat rate tax system that is used to finance lump sum transfers to all members if the population (i.e., a negative income tax scheme). Further suppose that we decide to increase the flat rate tax rate and increase the grant level. This policy discourages work in two ways. The tax increase itself reduces the reward from work, but the lump sum

\(^{10}\) Much of the literature on optimal taxation assumes away income effects to simplify the analysis (see Diamond (1998)). But my review of the empirical literature suggests this assumption is questionable.

\(^{11}\) Note that if \(\eta < -1 \), income effects dominate substitution effects, and the Marshallian elasticity turns negative. Substituting \(\eta = -1 \) into (6), and assuming \(S \approx 1 \), we see the income effect, or “mpe,” cannot be less than \(-1/(1+\gamma)\) if the Marshallian elasticity is to be positive. Note that a smaller \(\gamma \) implies a stronger substitution effect.
payments also discourage work via the income effect. To a first order approximation (ignoring heterogeneity in wages/earnings in the population) the Hicks elasticity is the correct concept to use in evaluating the labor supply effects of such a policy change.\footnote{Aside from population heterogeneity, another approximation here is that I ignore the distinction between “Slutsky compensation” – i.e., giving people enough of a transfer that the original consumption bundle is still feasible – and “Hicks compensation” – i.e., giving people enough of a transfer that the original utility level is maintained. For small policy changes the two concepts are approximately equivalent, and even for large policy changes our elasticity estimates are probably not precise enough to draw a meaningful distinction between the two. Hence, I’ll generally ignore the distinction between Hicks and Slutsky compensation in this article.}

In contrast, suppose the revenue from the increased income tax is used to finance public goods (e.g., schools, public transport, carbon capture) or simply thrown away (e.g., the war in Iraq). In that case the negative effect on labor supply will be less, because the income effect that comes from transferring the tax revenue back to the population is avoided. The Marshallian elasticity is the correct concept in this case.

Another key point is that in a progressive tax system (i.e., one with brackets such that marginal tax rates increase with income) it can be shown (in the static model) that effects of changes in tax rates beyond the first bracket depend primarily on the Hicks elasticity. Hence, the welfare costs of progressive taxation are largely a function of the Hicks elasticity as well. I’ll discuss this key point in much more detail in Section V.A. (static models).

III.B. The Basic Dynamic Model with Savings

The pioneering work by MaCurdy (1981, 1983) and Heckman and MaCurdy (1980, 1982) introduced dynamics into empirical labor supply models by allowing for borrowing and lending across periods. This model is commonly known as the “life-cycle” model of labor supply. They considered a multi-period model, but in order to emphasize the key points it is useful to first consider a model with two periods in the working life. Initially, I also assume workers have perfect foresight (about future wages, taxes, tastes and non-labor income). As before, I’ll assume the per-period utility function is given by equation (1).

The key change in the dynamic model is that the first period budget constraint is now $C_1 = w_1(1-\tau_1)h_1 + N_1 + b$, where b is the net borrowing in period 1, while $C_2 = w_2(1-\tau_2)h_2 + N_2 - b(1+r)$, where $b(1+r)$ is the net repayment of the loan in period 2. Here τ_1 and τ_2 are tax rates on earnings in periods 1 and 2, and r is the interest rate.\footnote{Given the focus on wage taxation I ignore taxation of asset income. One may interpret r as an after-tax rate.} Of course, b can be negative (i.e., the person saves in period 1). In the life-cycle model, in contrast to the static model, there is a clear distinction between exogenous non-labor income \{N$_1$, N$_2$\} and asset income.\footnote{It is rather standard in life-cycle models to ignore exogenous non-labor income \{N$_1$, N$_2$\}, thus assuming that all non-labor income is asset income. But as we’ll see, adding exogenous non-labor income does not complicate the analysis of MaCurdy-type life-cycle models in any significant way.}
In a dynamic model a person chooses a life-cycle labor-supply/consumption plan that maximizes the present value of lifetime utility, given by:

\[V = U_1 + \rho U_2 \]

where \(\rho \) is the discount factor. Substituting \(C_1 \) and \(C_2 \) into (3) and then (14) we obtain:

\[V = \left[\frac{w_1 h_1 (1 - \tau_1) + N_1 + b}{1 + \eta} \right]^{\eta} - \beta_1 \frac{h_1^{1+\gamma}}{1 + \gamma} + \rho \left[\frac{[w_2 h_2 (1 - \tau_2) + N_2 - b(1 + r)]^{1+\eta}}{1 + \eta} - \beta_2 \frac{h_2^{1+\gamma}}{1 + \gamma} \right] \]

In the standard life-cycle model, there is no human capital accumulation via returns to work experience. Thus, a worker treats the wage path \(\{w_1, w_2\} \) as exogenously given (that is, it is unaffected by the worker’s labor supply decisions).

In the life-cycle model, a new labor supply elasticity concept is introduced. This is the response of a worker to a temporary change in the after-tax wage rate. For instance, this could be induced by a temporary tax cut in period 1 that is rescinded in period two. Since the worker can now save, the response may be to work more in period one, save part of the extra earnings, and then work less in period two. The strength of this reaction (i.e., shifting one’s labor supply towards periods where wages are relatively high) is given by the “intertemporal elasticity of substitution,” also known as the “Frisch” elasticity.

The first order conditions for the worker’s optimization problem are simply:

\[\frac{\partial V}{\partial h_1} = \left[w_1 h_1 (1 - \tau_1) + N_1 + b \right]^{\eta} w_1 (1 - \tau_1) - \beta_1 h_1^{\gamma} = 0 \]

\[\frac{\partial V}{\partial h_2} = \left[w_2 h_2 (1 - \tau_2) + N_2 - b(1 + r) \right]^{\eta} w_2 (1 - \tau_2) - \beta_2 h_2^{\gamma} = 0 \]

\[\frac{\partial V}{\partial b} = \left[w_1 h_1 (1 - \tau_1) + N_1 + b \right]^{\eta} - \rho \left[w_2 h_2 (1 - \tau_2) + N_2 - b(1 + r) \right]^{\eta} (1 + r) = 0 \]

Equation (18) can be written as \(\left[C_1 \right]^\eta / \left[C_2 \right]^\eta = \rho (1 + r) \), which is the classic inter-temporal optimality condition that requires one to set the borrowing level \(b \) so as to equate the ratio of the marginal utilities of consumption in the two periods to \(\rho (1+r) \).

An important special case is when \(\rho = 1/(1+r) \), so people discount the future using the real interest rate. In that case we have \(\rho (1+r)=1 \), so that \(\left[C_1 \right]^\eta / \left[C_2 \right]^\eta = 1 \) and hence \(C_1 = C_2 \). That is, we have complete consumption smoothing.
Utilizing the inter-temporal condition, we divide (17) by (16) and take logs to obtain:

\[\ln \left(\frac{h_2}{h_1} \right) = \frac{1}{\gamma} \left\{ \ln \left(\frac{w_2}{w_1} \right) + \ln \left(\frac{1-\tau_2}{1-\tau_1} \right) - \ln \rho(1+r) - \ln \frac{\beta_2}{\beta_1} \right\} \]

From (19) we obtain:

\[\frac{\partial \ln(h_2 / h_1)}{\partial \ln(w_2 / w_1)} = \frac{1}{\gamma} \]

Thus, the Frisch elasticity of substitution, the rate at which a worker shifts hours of work from period 1 to period 2 as the relative wage increases in period 2, is simply \(1/\gamma\). The elasticity with respect to a change in the tax ratio \((1-\tau_2)/(1-\tau_1)\) is identical.

There is an important relation between the Frisch, Hicks and Marshallian elasticities:

\[\frac{1}{\gamma} \gg \frac{1}{\gamma - \eta \cdot R} \Rightarrow \frac{1}{\gamma - \eta \cdot S} \]

Thus, the Frisch elasticity is larger than the Hicks, which is larger than the Marshallian. This follows directly from \(\eta < 0\) (i.e., diminishing marginal utility of consumption). This relationship implies that if we can obtain an estimate of the Frisch elasticity it provides an upper bound on how large the Hicks and Marshallian elasticities might be.

It is straightforward to extend the life-cycle model to the case of multiple periods and uncertainty. First, note that equations like (16)-(17) must hold in any period, so we have:

\[\left[w_t h_t (1-\tau_t) + N_t + b_t \right]^\eta w_t (1-\tau_t) = \beta_t h_t^\eta \]

\[\Rightarrow \frac{\beta_t h_t^\eta}{C_t^\eta} = w_t (1-\tau_t) \]

Notice that (22) is almost identical to the MRS condition (5) that holds in the static model. The only difference is that now consumption includes the borrowing/lending amount \(b_t\) that is allocated to period \(t\). Under uncertainty the inter-temporal condition (18) only holds in expectation. Following MacCurdy (1981) we write:

\[C_t^\eta = E_t \rho(1+\tau_{t+1})C_{t+1}^\eta \Rightarrow \rho(1+\tau_{t+1})C_{t+1}^\eta = C_t^\eta (1+\xi_{t+1}) \]

where \(\xi_{t+1}\) is a mean zero forecast error that is uncorrelated with information known to the agent at time \(t\). If we assume these forecast errors are “small” we obtain an approximate expression for the evolution of the marginal utility of consumption over the life-cycle:

\[\Delta \ln C_t^\eta = -\ln \rho(1+\tau_{t+1}) + \xi_t \]
Taking logs and differencing (22), and using (24) to substitute out for $\Delta \ln C_{it}^\eta$, we obtain:

\[(25) \quad \Delta \ln h_t = \frac{1}{\gamma} \Delta \ln w_t + \frac{1}{\gamma} \Delta \ln (1 - \tau_t) - \frac{1}{\gamma} \ln \rho(1 + r_t) + \frac{1}{\gamma} \Delta \ln \beta_t + \frac{1}{\gamma} \xi_t \]

Under conditions I discuss below, (25) can be used to estimate the Frisch elasticity ($1/\gamma$).

With these concepts in hand, we are in a position to talk about estimation of labor supply elasticities. In Section IV I’ll discuss general estimation issues, and in Sections V and VI I’ll turn to a survey of specific studies.

IV. Econometric Issues in Estimating Labor Supply Elasticities

Broadly speaking, there are two main approaches to estimating labor supply elasticities in the literature. One starts by specifying a utility function, which is then fit to observed data on hours, wages and non-labor income. The alternative is to specify a labor supply function directly. The functional form is typically chosen so that estimation involves regressing hours on wages and non-labor income, and so that convenient expressions for labor supply elasticities are obtained. I’ll begin by discussing a regression approach.

Various functional forms could be chosen for an hours regression, and many have been used in the literature, but there is no consensus on the “right” functional form. So to fix ideas, consider a logarithmic specification of the form:

\[(26) \quad \ln h_{it} = \beta + e \ln w_{it} (1 - \tau_t) + \beta_I N_{it} + \epsilon_{it} \]

where I now include person subscripts i to indicate that we have data on a sample of people. Thus h_{it} is hours of work for person i in period t, and so on. Crucial is the addition of the stochastic term ϵ_{it}, which enables the model to explain heterogeneity in behavior. If (26) is to be interpreted as a labor supply relationship, then the ϵ_{it} must be interpreted as supply shocks (that is, shocks to person i’s tastes for work at time t). [In the utility function approach, the ϵ_{it} would typically have been obtained by assuming the exists a part of the taste for leisure term β_t in an equation like (3) that is unobserved by the econometrician].

It is important that equation (26) controls for non-labor income, N_{it}. As a result, the coefficient on the log after-tax wage rate (e) is the effect of a wage change holding non-labor income fixed. Thus it is directly interpretable as the Marshallian elasticity.\(^{15}\) The coefficient on the non-labor income variable ($\beta_I = \partial h_{it}/\partial N_{it}$) can be multiplied by the after-tax wage rate

\(^{15}\) Blundell and MaCurdy (1999) provide an extensive discussion of how different sets of controls lead to different interpretations of the wage coefficient in an hours regression.
to obtain the income effect $ie = w_i(1-\tau)\beta_I$. Then, of course, the Hicks elasticity can be backed out using the Slutsky equation as $e_H = e - w_i(1-\tau)\beta_I$.16

There are a multitude of econometric problems that arise in attempting to estimate labor supply elasticities, but I will highlight six of the most important:

1. The first main problem is endogeneity of wages and non-labor income. There is no good reason to think these variables would be uncorrelated with tastes for work. For example, people who are relatively hard working (or, in other words, have a relatively low taste for leisure) might also work harder and be more productive when they do work. Then ε_{it} would be positively correlated with the wage rate. Furthermore, those who are relatively hard working might also tend to save more, leading to relatively high asset income. This would create a positive correlation between ε_{it} and non-labor income.

These problems are not merely academic. Pencavel (1986, p. 23) reports a simple OLS regression of annual male hours of work on wage rates, various types of non-labor income, and a long list of demographic controls (e.g., education, age, marital status, children, race, health, region) using data from the 1980 US census. He finds that the coefficient on asset income is actually positive, implying that $10,000 in additional non-labor income would increase annual hours by 46 hours. This contradicts the assumption that income effects should be negative.17 He also finds that the coefficient on the wage rate is negative, implying that a dollar per hour wage increase would reduce annual hours by 14. As noted earlier, a negative Marshallian elasticity is theoretically possible, but only due to a large negative income effect. So, prima facie, the sign pattern found here seems to completely contradict economic theory. But it is quite likely the result of endogeneity (or other econometric problems I’ll list later).

One way to deal with endogeneity problems is to adopt a fixed effects specification, where the error term is decomposed as:

\[
\varepsilon_{it} = \mu_i + \eta_{it}
\]

Here μ_i is an individual fixed effect, which captures person i’s (time invariant) taste for work, while η_{it} is an idiosyncratic taste shock (e.g., person i may have been sick in a particular period). In the fixed effects approach it is assumed that the fixed effect μ_i may be correlated with wages and non-labor income, but that the idiosyncratic shocks η_{it} are not. Methods such

16 It is important to note that (26) is not consistent with the utility function in (3) because, as we saw in (10), equation (3) gives rise to an income effect that takes on a rather different form.

17 A positive income effect for hours, implying a negative income effect for leisure, means leisure is not a normal good (i.e., people do not demand more leisure as they become wealthier). While not theoretically impossible this seems highly unintuitive, and it undermines the standard labor supply model.
as first differencing or de-meaning the data can be used to eliminate μ_i from the error term. The η_{it} terms that remain are then assumed exogenous.\footnote{A limitation of the fixed effects approach is that the η_{it} must be “strictly exogenous” as opposed to merely exogenous. This means the η_{it} must be uncorrelated with all leads and lags of wages and non-labor income, not just the contemporary values. Strict exogeneity is actually a much stronger assumption. It implies, for example, that an adverse health shock that lowers one’s taste for work today cannot affect one’s wages in subsequent periods. Yet, one could easily imagine that it would (e.g., if working less in the current period causes one’s human capital to depreciate). Keane and Runkle (1992) provide an extensive discussion of this issue.} In addition, labor supply studies typically also include various observable control variables that might shift tastes for work, such as age, number and ages of children, marital status, etc.

A second approach is instrumental variables (IV). Here one seeks instruments that are correlated with wages and non-labor income, but uncorrelated with tastes for work (ε_{it}). For example, changes in the world price of iron ore, bauxite or coal would shift wage rates in Australia, but are presumably uncorrelated with tastes for work. Thus, mineral prices would be sensible instruments for wage rates. In most contexts, however, validity of instruments is controversial. We’ll see examples of this when discussing particular papers below.

(2) The second main problem involved in estimation of (26) is that real world tax schedules are not typically the sort of flat rate schedules that I assumed in the theoretical discussion of Section III. The typical “progressive” rate schedule in OECD countries involves transfers to low income individuals, a rate at which these transfers are taxed away as income increases, and a set of income brackets, with progressively higher tax rates in higher income brackets. We can summarize this by saying the tax rate τ_i that a person faces, as well as their non-labor income N_{it}, are functions of their wage rate and hours of work. I’ll denote these functions as $\tau_i(w_{it}, h_{it})$ and $N_{it}(w_{it}, h_{it})$. Then (26) becomes:

\begin{equation}
\ln h_{it} = \beta_0 + \beta_w \ln w_{it} (1 - \tau_i(w_{it}, h_{it})) + \beta_N N_{it}(w_{it}, h_{it}) + \varepsilon_{it} \tag{28}
\end{equation}

This creates a blatant endogeneity problem, as the after-tax wage rate and non-labor income depend directly on hours, the dependent variable. For example, for a given pre-tax wage and non-labor income, a person with a low taste for leisure (i.e., a high ε_{it}) will work more hours. With progressive taxes, this may drive the person into a higher bracket and/or a lower level of transfers. Hence, progressive taxes generate a negative correlation between the error term ε_{it} and both the after-tax wage and non-labor income. OLS assumptions are violated, and OLS estimates of (28) are rendered meaningless. [It is worth emphasizing that this endogeneity problem arises by construction even if the pre-tax wage rate w_{it} is actually exogenous].

Another problem created by progressive taxation is that tax rates do not usually vary smoothly with income. Rather, they tend to take discrete jumps at certain income levels. An
example is given in Figure 1, which shows the budget constraint created by a tax system with two brackets. In bracket 1, the tax rate is τ_1, while in bracket 2 the tax rate jumps to τ_2. The person in the graph moves into the upper bracket if he/she works more than H_2 hours, at which point his/her income ($wH_2 + N$) exceeds the cutoff level for bracket 2. At this income level the slope of the budget constraint suddenly drops from $w(1- \tau_1)$ to $w(1- \tau_2)$, creating a “kink” point where the constraint does not have a well defined slope. The whole theory discussed in Section III was based on the idea that hours are determined by setting the MRS between consumption and leisure equal to the after-tax wage rate, which is the slope of the budget line. This approach breaks down if the budget constraint contains kinks.

How best to handle the problems created by piecewise linear budget constraints has been the subject of considerable research effort – and controversy – in the labor supply literature. Three main alternative approaches have been proposed, first by (i) Hall (1973), then by (ii) Burtless and Hausman (1978), Wales and Woodland (1979), Hausman (1980, 1981), Blomquist (1983) and Moffitt (1983) and finally by (iii) MaCurdy (1983) and MaCurdy, Green and Paarsch (1990). I’ll discuss these methods in detail – along with the surrounding controversies – in Section V.A.

(3) The third main problem in estimating an equation like (26), emphasized by Pencavel (1986, p. 59), is that we can’t be sure if we are estimating a labor supply curve or a labor demand curve, or just some combination of the two. The key question is why wages and non-labor income vary across people/over time. For clarity I’ll focus on the problem of wages (assuming non-labor income is exogenous). A common (although not universal) perspective is that wages are a payment for skill. Each person has a skill level S_{it} and the economy as a whole determines an equilibrium rental price on skill (p_t). Thus, the wage rate is given by:

$$w_{it} = p_t S(X_{it})$$

Here $S(X_{it})$ is a function that maps a set of individual characteristics X_{it} into the skill level S_{it}. X_{it} would include the person’s skill endowment, along with education, experience, etc..

Now we modify (26) to include a set of observables Z_{it} that shift tastes for work:

$$\ln h_{it} = \beta + e \ln w_{it} (1- \tau_r) + \beta_f N_{it} + \beta_f Z_{it} + \epsilon_{it}$$

One approach to identification of the supply curve in (30) is that there exist some variables in X_{it} that can be plausibly excluded from Z_{it}. Unfortunately, such variables are hard to find.

For example, as we’ll see, quite a few authors assume that education enters X_{it} but not Z_{it}. Yet it is perfectly plausible that education is related to tastes for work, so that it belongs in
as well. Indeed, the profession has had difficulty agreeing on any particular variable or set of variables that could be included in \(X_{it} \) and excluded from \(Z_{it} \).

Another approach becomes apparent if we assume that \(X_{it} = Z_{it} \), but then substitute (29) into (30) to obtain the “reduced form” equation:

\[
\ln h_{it} = \beta + e\{\ln p_t + \ln S(Z_{it}) + \ln(1 - \tau_t)\} + \beta_T Z_{it} + e_{it}
\]

Here the term \(\beta_T Z_{it} = e \ln S(Z_{it}) + \beta_T Z_{it} \) subsumes all of the common skill and taste shift variables. As we see from (31), one way to identify the Marshallian elasticity \(e \) in the supply equation is to exploit exogenous variation in the skill rental price \(p_t \) and/or in tax rates \(\tau_t \).

As I alluded to under problem (1), prices of raw materials like oil, iron ore, coal or bauxite could plausibly serve as “demand side instruments” that shift the skill rental price but are unrelated to tastes for work. In contrast, as I discussed under problem (2), the marginal tax rates that people actually face are presumably endogenous given progressive taxation. But the generic tax rules that people face may (perhaps) be plausibly be treated as exogenous. Thus, one might consider estimating an equation like (30) using raw material prices and/or tax rules as instruments for after-tax wages.\(^{19}\)

A more serious endogeneity problem arises if there exist aggregate taste for work shocks. In that case \(e_{it} \) is not mean zero in the population, and these aggregate shocks will in general alter the equilibrium skill rental price. This difficult issue is discussed in Altug and Miller (1990), which I describe in Section V.B.

(4) The fourth main problem involved in estimation of (26) is that wages are not observed for people who choose not to work. This leads to the well known problem of “selection bias” if we attempt to estimate (26) using data on workers alone. For instance, assume that, \emph{ceteris paribus}, the probability of working is increasing in the wage rate. Then, people we see working despite relatively low wages will be those with relatively high tastes for work. This induces a negative correlation between \(w_{it} \) and \(e_{it} \) among the sub-population of workers, even if \(w_{it} \) is exogenous in the population as a whole.

Pioneering work by Heckman (1974) began a large literature on methods to deal with the selection problem. Unfortunately, there is no solution that does not involve making strong assumptions about how people select into employment. This means that empirical results based on these methods are necessarily subject to some controversy.

\(^{19}\) These issues may apply to non-labor income as well. Again, a possible approach is to instrument for non-labor income using the rules that determine transfer benefits. This approach is taken in Bernal and Keane (2009).
In the literature on male labor supply it is common to ignore selection on the grounds that the large majority of adult non-retired men do participate in the labor market, so selection can be safely ignored. Whether selection is really innocuous is unclear, but this view is adopted in almost all papers on males that I review. In contrast, dealing with selection by modeling participation decisions is central to the modern literature on female labor supply.

(5) The fifth main problem in estimation of (26) is interpretation of the non-labor income variable. In the static model, current non-labor income is treated as a measure of wealth. However, much of non-labor income is asset income, and asset levels are, of course, driven by life-cycle consumption and savings patterns. Specifically, we expect assets to follow an inverted U-shaped path over the life-cycle: low when people are young and have low incomes, must borrow to buy houses, etc., high in the middle of the life-cycle as people build up assets for retirement, and then declining in retirement. This means a person’s asset level at a particular point in time is not a good indicator of their lifetime wealth.

For example, a 35 year old with a high level of skills who has just gone rather heavily into debt in order to buy a house may in reality be wealthier (in a life-cycle sense) than a 60-year who has positive savings but at a level that is inadequate to fund retirement. The income effect creates a greater inducement to supply labor for the latter than the former, despite the fact that latter person has a higher level of current assets.

One approach to this problem, pursued by MaCurdy (1983) and Blundell and Walker (1986), is to estimate versions of (26) where the non-labor income variable is redefined in a manner that is consistent with life-cycle asset allocation. An alternative, due to MaCurdy (1981), is to estimate a labor supply function like (25) that is explicitly derived from a life-cycle model. I discuss these approaches in Section V.B. A third approach is full structural estimation of the life-cycle model, which I discuss in Section V.C.

(6) A sixth major problem in estimation of labor supply elasticities is measurement error in wages and non-labor income. There is broad consensus that wages are measured with considerable error in available micro data sets. As is well known, classical measurement error will cause OLS estimates of the coefficient on the wage variable to be biased towards zero, leading to underestimates of labor supply elasticities.20

But the measurement error in wages may not be classical. In many studies wage rates are constructed by taking the ratio of annual earnings to annual hours. If hours are measured with error this leads to “denominator bias.” That is, measurement error induces a negative

20 Measurement error may create greater problems when estimating first differenced labor supply equations like (25) derived from a life-cycle model. First differencing compounds the error, reducing the signal to noise ratio.
correlation between measured hours and the ratio wage measure, biasing the wage coefficient in a negative direction. This may in part account for the negative wage coefficient found by Pencavel (1986, p. 23). Many of the studies I describe below use ratio wage measures, including a disproportionate number of studies that obtain small labor supply elasticities.

One way to deal with measurement error is to instrument for after-tax wages. Notice that in discussing estimation of (26) and (30) I already indicated that IV procedures may be necessary to deal with endogeneity problems. In many studies the use of IV serves the dual role of dealing with endogeneity and measurement error. In contrast, in the fully structural approach (Sections V.C and VI.A) it is necessary to model the measurement error process.

It is likely that error in measuring non-labor income is even more severe than that in measuring wages. As we’ll see, some methods for modeling labor supply in the presence of taxes require modeling details of workers’ budget constraints. Yet knowing the actual budget constraint that workers face given modern tax systems is quite difficult. One key problem is that taxes apply to taxable income, and the typical system offers an array of deductions. In most data sets it is difficult or impossible to know which deductions a worker is eligible for and/or actually takes, so deductions are often imputed. Other problems are accounting for all sources of non-labor income, and measuring the fixed costs of work.

V. A Survey of the Male Labor Supply Literature

There have been many prior surveys of the labor supply literature, including Hausman (1985), Pencavel (1986), Killingsworth and Heckman (1986), Blundell and MaCurdy (1999) and Meghir and Phillips (2008). They typically sort results by demographic group and/or econometric models employed. In this Section I focus on labor supply of men, and consider results from (A) static models, (B) life-cycle models with savings, and (C) life-cycle models with both savings and human capital. In Section VI, I’ll discuss the literature on women.

As should be clear from Section IV, there are many econometric problems to confront when estimating labor supply elasticities. And, as we’ll see below, there are many alternative approaches to dealing with these problems. Unfortunately, no consensus has emerged on a “correct” approach. Indeed, the controversy between advocates of alternative approaches has often been rather intense, as will at times become clear in what follows.

V.A. A Summary of Results from Static Labor Supply Models

Pencavel (1986) notes that the first labor supply function estimation using individual (as opposed to aggregate) level data was by Kosters (1969). He considered employed married men, aged 50-64, from the 1960 U.S. Census. Estimating an equation with log hours as the dependent variable, and logs of wages and non-labor income as independent variables (along
with various controls for tastes) he obtained a Marshallian elasticity of –0.09 (i.e., backward bending labor supply) and a small (negative) income effect (-0.14). However, this early study ignored endogeneity, taxes, and essentially all the key problems listed in Section IV.

As Pencavel (1986) discusses, a number of subsequent studies attempted to instrument for the wage and/or non-labor income to deal with measurement error. But these studies generally continued to obtain small negative Marshallian elasticities for married men. For instance, Ashenfelter and Heckman (1973) instrument for non-labor income and obtain $e = -0.15$ and $ie = -0.27$ and a Hicks elasticity of 0.12. Boskin (1973) instruments for the wage and obtains a Marshallian elasticity of -0.07, an income effect of -0.17 and a Hicks elasticity of 0.10. These studies continued to ignore taxes.

Hall (1973) developed a method to deal with the piecewise linear budget constraints created by progressive taxation. The idea, illustrated in Figure 1, is to model each person as if they choose labor supply subject to a hypothetical linear budget constraint created by taking the segment (or bracket) on which they are observed to locate, and extending it from $h=0$ to $h=H_{\text{max}}$. In Figure 1, these extensions of segments 1 and 2 are indicated by the dotted lines. For example, the hypothetical budget constraint for a person on segment 2 is characterized by the slope $w(1-\tau_2)$ and the “virtual” non-labor income level $V_2 = N_+ w(\tau_2 - \tau_1)H_2$. As noted by Hall (1973), if preferences are strictly convex (as implied by diminishing marginal returns to consumption and leisure) a person facing such a hypothetical budget constraint would make the same choice as when facing the actual budget constraint.²¹

Pencavel (1986) excluded Hall’s results from his extensive survey because “many different estimates are presented and I gave up the attempt to summarize them adequately with a few numbers.” However, Hall’s Figures 3.5 and 3.6 appear to provide a concise summary of the results. Hall’s sample consisted of all men and women from the 1967 U.S. Survey of Economic Opportunity (SEO), which is an augmented version of the CPS to include better wage and hours measures and an over-sample of the low income population. Hall’s Figures 3.5 and 3.6 present labor supply curves averaged across various demographic groups. Figure 3.6 shows backward bending labor supply above an after-tax wage rate of about $2.00 per hour. But Figure 3.5 shows a Hicks elasticity at 2000 hours of approximately 0.45.²² Thus, my interpretation is that Hall’s estimates imply backward bending labor supply but a strong income effect and a large Hicks elasticity.

²¹ It is common in applying this method to instrument for wages and non-labor income to deal with measurement error. Hall (1973) does this as well.
²² The graph of the compensated labor supply function that Hall (1973) presents in Figure 3.5 is rather flat over a very wide range. This is not true of the uncompensated graph.
It should be noted that Hall (1973)’s approach does not deal with the endogeneity of after-tax wages and non-labor income created by the choice of segment. If tastes for work are stochastic, as in (28), then the segment where one chooses to locate is determined not only by ones wage rate and non-labor income, but also by the taste shock \(\epsilon_{it} \). By taking the segment where a person chooses to locate as given we are in effect truncating the range of the taste shock. E.g., people who locate on a high hours segment will tend to be those with high tastes for work. As I noted earlier, this induces a negative correlation between the after-tax wage and tastes for work, which tends to bias labor supply elasticities in a negative direction.

The papers by Burtless and Hausman (1978) and Wales and Woodland (1979) were the first to model choice of segment. Thus, in estimating labor supply elasticities, they account for the correlation between taste shocks and after-tax wages. Other well known examples of this “structural approach,” in which one models in detail how people make labor supply decisions subject to a non-linear tax schedule, include Hausman (1980, 1981), Blomquist (1983) and Moffitt (1983). The basic idea of the structural approach is illustrated by the following simple example: Assume a two segment budget line as in Figure 1. Further assume that person \(i \) locates on budget segment 2, with slope \(w_i(1-\tau_2) \) and virtual income \(V_i \). The person has to work at least \(H_2 \) hours to be on this segment. Now, to keep things simple (and highlight the key idea) I’ll assume that we know a person’s segment without error, but that hours are measured with error. This could occur, for example, if we had access to tax records to determine a person’s earnings and tax bracket, but had to rely on survey data to measure hours. Assume the person’s choice of hours is determined by the equation:

\[
\ln h_i = \beta_0 + e \ln w_i (1-\tau_i) + \beta_1 V_i + \epsilon_i
\]

Here, in contrast to equation (26), labor supply is expressed as a function of \(V_i \), the level of virtual income for the segment on which person \(i \) locates. Observed hours are given by

\[
\ln h_i^o = \ln h_i + v_i = \ln h_i^* + \epsilon_i + v_i
\]

where \(v_i \) is measurement error and \(\ln h_i^* \) is the predicted level of log hours from (32). Then the likelihood contribution for person \(i \) is given by:

\[
P(\ln h_i^o, \ln h_i > \ln H_2) = P(\epsilon_i + v_i, \epsilon_i + \ln h_i^* > \ln H_2)
\]

\[
= f(\epsilon_i + v_i | \epsilon_i > \ln H_2 - \ln h_i^*) P(\epsilon_i > \ln H_2 - \ln h_i^*)
\]

Note that the density of the error in the hours equation is now conditioned on the event
$\varepsilon_i > \ln H_2 - \ln h^*_i$, accounting for the fact that those who locate on segment 2 have relatively high taste shocks. Conversely, the analogous term to (34) for people who locate on segment 1 includes the truncation $\varepsilon_i < \ln H_2 - \ln h^*_i$. Thus, building the likelihood based on terms like (34) will give an estimator that is consistent in the presence of endogenous segment location.

For males, the first study to model the full complexity of the budget constraint created by progressive taxation, and model men as choosing labor supply subject to this constraint, was Wales and Woodland (1979). They assume wages and non-labor income are measured without error, and that preferences are homogeneous in the population. Given these assumptions, the econometrician can determine a worker’s true optimal hours level (and true budget segment), conditional on the model parameters. Deviations between observed hours and those predicted by the model are explained by measurement error. The Wales and Woodland (1979) estimates, obtained using married men from the PSID, are quite different from the earlier literature. They estimated a Marshallian elasticity of 0.14 (finally positive!), a large income effect of -0.70, and a Hicks elasticity of 0.84.

Hausman (1981) extended the Wales and Woodland (1979) approach to include taste heterogeneity. Specifically, he let β_i in (32) be random in the population (while interpreting ε as measurement error). With heterogeneity in β_i, the worker’s choice of segment is no longer deterministic. Conditional on the latent β_i, the likelihood contribution for a worker is the density of the measurement error that reconciles observed and predicted hours. However, to form the likelihood, one must now integrate out the latent β_i from this density. This means integrating over all possible segments and kink points, weighting each by the probability β_i is in the appropriate range such that a worker would choose it. This obviously makes estimation much more difficult than when the true segment is known (as in Wales and Woodland (1979) or my simple example in (32)-(34)). For estimation, Hausman (1981) also used married men in PSID. He obtained a Marshallian elasticity of close to 0 and an income effect of -0.77.

An important point, stressed by Hausman (1981), is that, even with a small (or zero) Marshallian elasticity, large Hicks elasticities of the type estimated by Hall (1973), Wales and Woodland (1979) and Hausman (1981) imply large negative labor supply effects of progressive taxation (as well as large welfare losses). To understand why, consider again Figure 1. A person in bracket #1 has an after tax wage rate of $w(1-\tau_1)$ and non-labor income of N. If this person increases his/her hours above level H_2, so that he/she earns enough to be

\[23 \text{ In fact, Hausman (1981) found that the welfare loss from progressive taxation was 22\% of tax revenues. He found that a shift to a flat rate tax would reduce this to only 7\%.} \]
in bracket #2, then not only does his/her marginal wage fall to \(w(1-\tau_2) \), but, in addition, the level of “virtual” non-labor income that is relevant for his/her decision making increases to \(V=N+wH_2(\tau_2-\tau_1) \). Thus, even if the Marshallian elasticity is close to zero, a large income effect (or, equivalently, a large Hicks elasticity) can have a strong negative effect on labor supply by discouraging workers from increasing hours above \(H_2 \).

Furthermore, following MaCurdy (1992), one can show, to a good approximation, that the Hicks elasticity determines the labor supply response of tax payers already in the higher brackets. Suppose the tax rate on segment #2 is increased from \(\tau_2 \) to \((\tau_2 + \Delta) \). This causes the after-tax wage to fall by \(\Delta w \) and virtual non-labor income to increase by \(\Delta wH_2 \). To keep things simple assume a simple linear labor supply function (as in Hausman (1981)):

\[
(35) \quad h = \beta + \beta_w w(1-\tau_2) + \beta_1 V_2 + \epsilon
\]

where \(\tau_2 \) and \(V_2 \) are the tax rate and virtual income on segment #2, respectively. Plugging in the new values for the tax rate and virtual income we get:

\[
(35') \quad h' = \beta + \beta_w w(1-\tau_2 -\Delta) + \beta_1 (V_2 + \Delta wH_2) + \epsilon
\]

Thus, we have that \(h' - h = -\beta_w w\Delta + \beta_1 w\Delta H_2 = -(\Delta w)(\beta_w H_2\beta_1) \). That is, the change in the after-tax wage \(-\Delta w\) is multiplied by \(\beta_w H_2\beta_1 \). If we multiply this quantity by \(w/H_2 \) we get precisely the Hicks elasticity from equation (8), for the linear model (35), evaluated at hours level \(H_2 \).

Therefore, following the MaCurdy (1992) approach, one can show, to a good approximation, that the Hicks elasticity determines the labor supply response of tax payers already in the higher brackets. Given their findings of substantial Hicks elasticities, Hall and Hausman became strong advocates for a flat rate tax.

Pencavel’s (1986) classic survey of male labor supply emphasized that the income effect, or “marginal propensity to earn,” could, in the static model, also be calculated from consumption data, by looking at how consumption/earnings respond to changes in non-labor income. In fact, Deaton (1982) did this; using the U.K. Family Expenditure Survey (FES) of 1973, he obtained an estimate of \(ie \) near zero (i.e., \(wh \) is hardly affected by an increase in non-labor income). Based on this result, Pencavel (1986) concludes estimates of the income effect that differ much from zero are suspect. He goes on to discount results of several studies that obtain large income effects, such as Wales and Woodland (1979) and Hausman (1981).

In my view this conclusion goes too far. The Deaton (1982) result is hard to interpret as a causal effect of non-labor income on consumption, as non-labor income is likely to be endogenous in a consumption equation. And in a life-cycle model, high non-labor income

24 In the linear model \(\beta_w = \partial h/\partial w \) is the uncompensated wage effect and \(h \beta_1 = \partial h/\partial N \) is the income effect.
may simply indicate high permanent income, causing it to be highly positively correlated with consumption. Furthermore, there is substantial evidence that people mostly save the proceeds from temporary tax rebates. As indicated earlier, introspection may suggest that very large effects of N on ωh (that is, values of ie very near -1) are implausible, but I would not conclude based on Deaton (1982) that only effects near zero are plausible.

Until now I have discussed only labor supply studies based on U.S. data. As Pencavel (1986) notes, the British literature took a somewhat different tack for two reasons. First, it has always focused on effects of taxation, so wages and non-labor income are always treated as after-tax. Second, it is largely based on the FES, which contains both hours and consumption data. Thus, it has usually estimated labor supply and consumption functions jointly. The eight British studies Pencavel cites all find small negative Marshallian elasticities (with a mean of -0.16), income effects in the -.04 to -.50 range (with a mean of -0.29), and Hicks elasticities ranging from 0.30 to slightly less than 0 (with a mean of 0.13).

A good deal of work on labor supply was stimulated by the negative income tax (NIT) experiments conducted in several U.S. cities beginning in 1968. The NIT experiments were intended to have treatment and control groups. Members of the treatment groups received a grant level G that was taxed away, at a fairly high rate, as they earned income. Thus, G serves as the guaranteed minimum income for a person with no earnings or non-labor income. At a certain income level a person reaches the “break-even point” where G is totally taxed away. Then, they revert to the normal income tax rate, with is typically less than the benefit tax rate. This creates a non-convex budget constraint, since tax rates fall as income rises.

Figure 2 illustrates the shape of a typical non-convex budget constraint created by the NIT or other types of welfare programs. The budget constraint connects points a, b, c, and e. The figure has been drawn so a person who works zero hours receives G. If they begin to work their income drops (from a to b), due to fixed costs of working (FC). I have drawn an example where, as the person works more hours, the grant G is taxed away at a 100% rate as earnings increase. This is represented by the flat purple line from point b to point c. The tax rate in the NIT program was only 40% or 60%, but it has not been uncommon for other types of welfare programs to have rates up to 100%. A good example is the Aid to Families with

25 Note that a one-for-one increase in consumption in response to an increase in non-labor income, if interpreted causally, is wildly at variance with the life-cycle model. In a life-cycle model, only unanticipated changes in non-labor income should alter consumption at all. Even an unanticipated change would be smoothed out over the whole life-cycle, and therefore would have little effect in any one period. Only an unanticipated change in non-labor income that is also expected to be highly persistent should have much impact on current consumption.
26 Of course, given a utility function defined over both leisure (or hours) and consumption, as in (3), along with a budget constraint, one can derive both labor supply and consumption functions.
Dependent Children (AFDC) program in the U.S. Finally, point \(c \) is the breakeven point. Above that the person is off the program and faces the regular income tax schedule.

Unfortunately, people in the NIT experiments were not actually assigned randomly to the “treatment” and “control” groups, and there is a substantial literature on why this was the case. Nevertheless, the NIT experiments generated useful variation in budget constraints across workers that can be used to help estimate labor supply elasticities.

A very well known analysis of the NIT experiments was by Burtless and Hausman (1978). The approach is similar to the Wales-Woodland (1979) and Hausman (1981) studies mentioned earlier. That is, the authors model how men choose labor supply subject to the complex non-linear budget constraint created by the NIT, including the choice of which segment to locate on. But, while the previously mentioned studies dealt with the convex budget constraints created by progressive taxation, the Burtless-Hausman study was the first to deal with the non-convex budget constraint created by a typical transfer program.

It is important to note that Hall (1973)’s simplifying idea (i.e., that a person’s hours choice would be unchanged if he/she had faced a hypothetical linear budget constraint through the observed hours point) does not work in this case. That idea, which allows one to work with labor supply functions provided one appropriately defines “virtual” non-labor income, requires a convex budget constraint. But as Burtless and Hausman (1978) discuss, given a non-convex budget constraint, one must specify the utility function in order to model labor supply decisions. Given the utility function, one can assess the maximized utility level on each segment and kink point of the constraint, and determine the utility maximizing kink or segment (and utility maximizing hours on that segment).

Still, Burtless and Hausman (1978) argued that, for consistency with prior literature, it is more intuitive to specify a familiar hours equation and work back (using Roy’s identity) to the implied utility function. Burtless and Hausman choose to use a double log specification:

\[
\ln h_{it} = \beta + e \ln w_{it} \left(1 - \tau_f(w_{it}, h_{it})\right) + e_I N_{it}(w_{it}, h_{it}) + \varepsilon_{it}
\]

Here \(e \) and \(e_I \) would be the Marshallian and the income elasticities in the hypothetical case of a person facing a linear budget constraint. Equation (36) implies the indirect utility function:

\[
v(w, N) = \exp(\beta) \frac{w^{1+e}}{1+e} + N^{1+e_I} \frac{1}{1+e_I}
\]

27 As an obvious example, the person whose indifference curve is drawn in Figure 2 would choose point \(a \), but he would make a different choice if he faced a linear budget constraint through point \(a \).

28 Today, I suspect many economists would feel more used to specifying utility functions than hours equations.
Burtless and Hausman introduce a stochastic element by letting $\exp(\beta_i) = X_i \beta_T + \varepsilon_i$ where X_i and ε_i are observed and unobserved taste shifters, respectively, and letting $\varepsilon_i \sim TN(\mu, \sigma^2_{\varepsilon_i})$ with a truncation from above at zero. This restricts the hypothetical income elasticity, in the linear budget constraint case, to be negative. It is worth emphasizing, however, that given the non-convex budget set, the estimates of e and e_I will not tell us anything about how a person would respond to particular changes in the tax structure. In a model of this type, that would require simulating the person's optimal behavior under the new regime.29

The implications of this point are far reaching and worth emphasizing. In particular, given non-convexities and piecewise linear budget constraints, utility function parameters are no longer tightly linked with any particular elasticity concept. Thus, labor supply may appear to be “elastic” or “inelastic,” depending on the type of budget constraint shift one considers.

This point is illustrated in Figure 2. The budget constraint goes through a, b, c, e, and the indifference curve is drawn so utility is maximized at a, where $h=0$. I have drawn the shape of the indifference curve so the Marshallian elasticity given a linear budget constraint would be modest – i.e., the person would choose to work close to 40 hours per week for a wide range of wage rates. But, this elasticity tells us nothing about how the person would respond to various changes in the non-linear budget constraint created by the program:

Consider first the program’s tax rate on earnings (or “benefit reduction rate”). The red line in the figure represents how the budget constraint shifts if the tax rate on earnings is reduced from 100% to 50%. As we see, this has no effect whatsoever on hours of work.

In contrast, the figure is also drawn so a small increase in the worker’s actual market wage rate would cause him/her to jump from 0 to 40 hours of work per week (by slightly raising point d). This is true whether the program tax rate is 100% or 50%. Similarly, reductions in the grant level or in the fixed costs of working would have large effects.

Thus, given data that contained wide historical variation in program tax rates, a researcher studying a program like that depicted in Figure 2 might well conclude labor supply is inelastic, so it would be very difficult to induce members of the target population to work. Historically, this is roughly what happened with the AFDC program in the U.S.. Years of tinkering with the AFDC tax rate in attempts to create work incentives had little effect, leading to a conventional wisdom that labor supply was “inelastic” for single mothers.

29This point was emphasized by all the authors who pioneered this literature. For instance, Blomquist (1983) states: “A change in the gross wage rate, nonlabor income, or parameters of the tax system changes the whole form of the budget set … the elasticities presented above should therefore not be used to calculate [their] effects …” (emphasis added).
Thus, most of the economics profession was taken by surprise when changes in policy in the mid-1990s, including wage subsidies (EITC) and child care subsidies (CCDF), as well as a strong macroeconomy that raised wage rates, led in a short period of time to dramatic labor supply increases for this group (see Fang and Keane (2005) for a detailed discussion). Notably, however, work by Keane and Moffitt (1998) and Keane (1995), who modeled the budget constraint created by AFDC (along with other programs and fixed costs of work) in great detail, predicted that, while large AFDC tax rate reductions would have little affect, labor supply of single mothers would be quite sensitive to wage subsidies, EITC and fixed cost of work subsidies (or work bonuses). This illustrates the value of a structural approach.30

Still, the labor supply literature has had a strong tendency to report parameters like e in (36) as “the” Marshallian elasticity obtained by the study in question. I will generally follow this ingrained tradition, but the reader should always keep this caveat in mind: when one sees a typical labor survey that contains a list or Marshallian and Hicks elasticities, one should recall that in many cases these are statements about the shape of workers’ utility functions, not about how they would respond to particular tax changes.

That being said, note that Burtless and Hausman obtained a “Marshallian elasticity” of $e \approx 0$ and an elasticity of hours with respect to non-labor income of $e_I = -0.048$. As we see from (8), to obtain the income effect from the income elasticity we need to multiply by wh/N. Given the population under study, reasonable values (on a weekly basis) appear to be roughly $w=3.00$, $h=35$, $N=70$ so that $wh/N = 105/70 = 1.5$, giving a typical value of $ie \approx -0.072$.31 The overall conclusion was that the income guarantee in the NIT experiments led to only modest reductions in labor supply (i.e., an hours reduction of about 7.5%).32

Pencavel (1986) summaries results of 8 other studies that also studied the NIT experiments. Again, the estimates of the Marshallian elasticity are all small, but the mean is positive (0.03). Income effects range from about 0.02 to -0.29 (mean -0.10). Hicks elasticity estimates are bunched fairly tightly around the mean of 0.13.

30 As noted by Hausman (1980), “Structural econometric models which make labor force participation a function of … wages, income transfer levels and the tax system can attempt to answer questions such as the effect of lowering the marginal tax rates on labor force participation. The more traditional reduced form models which do not explicitly parameterize the tax system will be unable to answer such questions.”
31 Burtless and Hausman (1978) do not go into much detail about characteristics of the sample. I choose $h=35$ because they indicate this was the mean of hours, and I choose $N=70$ because their examples imply that that G was approximately $3500 per year. $w=3.00 seems plausible given the time and sample, which was very low income. Alternatively, they evaluate wh/N at the first kink point in the budget constraint for control subjects (see the first row of their Table 2). This gives a higher ie of [(1.67)(43.16)/(27.8)](-0.048) = (2.6)(-0.048) = -0.125.
32 Burtless and Hausman (1978) have been criticized because they let the income elasticity e_I be heterogeneous in the population, and a large fraction of the estimates were bunched near zero. See Heckman and MaCurdy (1981). The implication is that much of the mass would have been on positive values for the income elasticity if this had been allowed. Even so, it seems the main conclusion of small income effects would not be altered.
Next, I turn to the influential paper by Blomquist (1983), who used the piecewise-linear method to study labor supply in Sweden in 1973. The country had a highly progressive tax structure at that time. Blomquist studied married men who were of prime working-age (i.e., 25-55 years old). His estimates implied a Marshallian elasticity of 0.08 and an income effect of $ie = -0.03$ at mean values in the data. The implied Hicks elasticity is 0.11.

Blomquist (1983) stressed the key point that in non-linear budget constraint models labor supply elasticities cannot (in general) tell us how people will respond to changes in the constraint. Hence, he used his model to simulate the consequence of Sweden switching from the highly progressive tax regime in place in 1973 to a flat tax, a lump sum tax, and a no tax regime. Under the (existing) progressive income tax, the model predicts average annual hours of work of 2143 hours (close to the sample average). It predicts that complete elimination of taxes would increase annual hours of work from 2,143 to 2,443, a 14% increase. Blomquist also calculates that a 34% flat rate tax would raise the same revenue as the progressive tax. Given a flat rate tax, average annual hours would be 2,297 hours, a 7.2% increase.

Comparing the proportional and no tax worlds, Blomquist finds a 34% tax increase (wage reduction) leads to a 6% reduction in hours. The implied Marshallian elasticity is roughly $6/34 = 0.18$. This is quite a bit larger than the Marshallian elasticity of 0.08 implied by the estimates at the mean values of after-tax wages and hours in the data. This illustrates how elasticities calculated assuming linear budget constraints can be quite misleading in a piecewise-linear context. It may also indicate that mean values of elasticities can be quite misleading with regard to population responses in models with heterogeneous workers.

The compensating variation (CV) is the lump sum payment needed to make a person in a progressive or flat-tax world equally well off as a person in a no-tax world. For the flat rate tax it is 16,417 SEK while for the progressive tax it is 18,059 SEK. This compares to 16,103 SEK in revenue per person (under either tax). One way to measure deadweight loss from a tax is the CV as a percent of revenue. This gives $(18059-16103)/16103 = 12\%$ for the progressive tax and 2% for the flat tax. Thus, the implied welfare losses for the progressive tax system are rather large. This is despite the quite modest estimates of the Marshallian and Hicks elasticities at the mean of the data (0.08 and 0.11 respectively).
At this point it is worth summarizing the state of the literature up until the mid-1980s. I have discussed three papers that used sophisticated econometric methods to model labor supply choices in the presence of progressive tax systems. These studies tended to find larger Hicks elasticities than did earlier work using “simpler” methods. Both Hausman (1981) and Blomquist (1983) estimated that welfare losses from progressive taxation were a substantial share of revenue raised (22% and 12%, respectively), and that these losses could be greatly reduced by shifting to a flat rate tax (7% and 2%, respectively). The third paper in this genre, Wales and Woodland (1979), did not calculate welfare losses from taxation, but they would presumably have found similar results, given their large Hicks elasticity estimate (0.84).³⁶ Hausman (1985) argued that this body of work provided a strong case for a flat rate tax.

However, this conclusion, and the whole approach to estimating piecewise-linear budget constraint models represented by Burtless and Hausman (1978), Wales and Woodland (1979) and Hausman (1981), became the subject of considerable controversy – often referred to as the “Hausman-MacCurdy controversy.” In a very influential paper, MaCurdy, Green and Paarsch (1990) argued that Hausman’s approach to handling piecewise-linear tax models was biased towards finding large Hicks elasticities. To see why, consider a linear specification as in (35). For a person on segment #1 in Figure 1, the labor supply equation is:

\[(37a)\]
\[h = \beta + \beta_w w(1 - \tau_1) + \beta_1 N + \varepsilon\]

while, for a person located on segment #2, the labor supply equation is:

\[(37b)\]
\[h = \beta + \beta_w w(1 - \tau_2) + \beta_1 [N + \tau_2 - \tau_1)H_2] + \varepsilon\]

In (37b) I have substituted \[V_2 = N + w(\tau_2 - \tau_1)H_2\].

Now, the taste shock \(\varepsilon\) has to be above a certain threshold (such that desired hours are at least \(H_2\)) for the person to locate on segment #2. And \(\varepsilon\) has to be below some threshold in order for the person to choose to locate on segment #1.³⁷ Crucially, there is an intermediate range of \(\varepsilon\) such that a person chooses to locate precisely at the kink point \(H_2\). This occurs if:

\[(38a)\]
\[\beta + \beta_w w(1 - \tau_2) + \beta_1 [N + \tau_2 - \tau_1)H_2] + \varepsilon < H_2\]

\[(38b)\]
\[\beta + \beta_w w(1 - \tau_1) + \beta_1 N + \varepsilon > H_2\]

Equation (38a) says, given a hypothetical budget line that extends segment #2 down to \(h=0\),

³⁶ Standing somewhat on its own is Burtless and Hausman (1978), who used similar methods to deal with the non-convex budget constraint faced by low-wage workers confronting an NIT program. They did not model the progressive tax system facing higher wage workers.

³⁷ Of course, this dependence of the range of the errors on the observed segment is precisely why the errors do not satisfy standard OLS assumptions in models with progressive taxation.
the person would choose hours less than H_2. Equation (38b) says, given a hypothetical budget line extending segment #1 up to $h=H_{\text{max}}$, the person would choose hours greater than H_2. For the actual two-segment constraint, the best choice is to locate precisely at the kink point H_2.

Now, rearranging (38) to express it as a range on ε, we obtain:

\begin{align*}
\varepsilon < H_2 &- \beta - \beta_w w(1-\tau_2) - \beta_l [N + w(\tau_2-\tau_1)H_2] \equiv U(\varepsilon) \\
\varepsilon > H_2 &- \beta - \beta_w w(1-\tau_1) - \beta_l N \equiv L(\varepsilon)
\end{align*}

Here I use $U(\varepsilon)$ and $L(\varepsilon)$ to denote the upper and lower bounds on ε such that a person wants to locate at the kink point. Obviously we must have $U(\varepsilon)>L(\varepsilon)$ in order for the probability of locating at the kink point to be positive. Indeed, the opposite case of $U(\varepsilon)>L(\varepsilon)$ would imply the logical impossibility that the probability is negative, implying an internal inconsistency within the model. The condition that $U(\varepsilon)>L(\varepsilon)$ can be written as:

\[-\beta_w w(1-\tau_2) - \beta_l [N + w(\tau_2-\tau_1)H_2] > -\beta_w w(1-\tau_1) - \beta_l N\]

which can be further simplified to:

\[(39) \quad \beta_w w(1-\tau_1)-w(1-\tau_2) - \beta_l w(\tau_2-\tau_1)H_2 > 0\]

or simply $\beta_w - \beta_l H_2 > 0$, which we can put in elasticity terms to obtain:

\[(40) \quad \left(\frac{w}{H_2}\right)[\beta_w - \beta_l H_2] > 0\]

The left hand side of (40) is simply the definition of the Hicks elasticity from equation (8), for the linear model (35), evaluated at hours level H_2. Thus, Macurdy, Green and Paarsch (1990) argued that the Hausman approach to piece-wise linear tax models requires the Hicks elasticity to be positive (at all kink points) to avoid generating negative probabilities.

Notice that if $\beta_l > 0$ (i.e., the income effect has the “wrong” sign, implying leisure is not a normal good) then (40) will have to turn negative for large enough values of H_2. Thus, for all practical purposes, if confronted with a tax system with kinks at high levels of income, the Hausman approach requires that $\beta_l < 0$. \(^{38}\) Indeed, Burtless and Hausman (1978), Hausman (1981) and Blomquist (1983) all restrict $\beta_l < 0$ in estimation. \(^{39}\)

\(^{38}\) Equation (39) says the uncompensated wage effect (β_w), times the drop in the wage in going from segment #1 to segment #2, must exceed the income effect (β_l) times the increase in virtual non-labor income. Normally, we would expect $\beta_l < 0$, so the second term in (39) is positive. Then (39) simply constraints how negative β_w, the sign of which is theoretically ambiguous, can be (i.e., the Marshallian elasticity can’t be too negative). But if β_l has the “wrong” sign (i.e., $\beta_l > 0$) then the second term is negative and increasing in H_2. In that case, it becomes very difficult to satisfy (39) for large values of H_2 unless the Marshallian elasticity is a very large positive.

\(^{39}\) All these papers assume the income effect is randomly distributed in the population with a truncation at zero.
To gain intuition for why (40) is necessary to induce people to locate at kink points, suppose $\beta_I > 0$. Then, for a person located at H_2, the increase in virtual non-labor income that occurs if he/she increases hours above H_2 is actually an inducement to increase hours, not a deterrent. Thus, the only thing to keep the person from increasing hours beyond H_2 is if the Marshallian elasticity is large enough to outweigh the perversely signed income effect (as the wage drops if the person moves above H_2). But if the Marshallian elasticity is large enough to outweigh the income effect it means by definition that the Hicks elasticity is positive.

To proceed, MaCurdy, Green and Paarsch (1990) – referring to surveys by Pencavel (1986) and Hausman (1985) – noted how papers that used “simple” empirical methods tended to obtain small Hicks elasticities, including even perverse negative values. In contrast, the papers that used the piecewise-linear budget constraint approach tended to get large Hicks elasticities. MaCurdy et al (1990) argued that the difference in results did not arise because the piecewise-linear budget constraint models did a better job of incorporating taxes. Instead, they argued the difference arose simply because the piecewise-linear approach imposed the restriction in (40) that the Hicks elasticity be positive. This criticism was highly influential, leading many to discount the large Hicks elasticities obtained using the piece-wise linear methods, and contributing to the consensus that the Hicks elasticity is small.

MaCurdy, Green and Paarsch (1990) proposed an alternative idea of approximating a piece-wise linear convex budget constraint by a smooth (i.e., kink free and differentiable) polynomial function. Suppose that tax rate is a differentiable function of earnings, which I’ll denote by $\tau(w_t h_t)$. Then, for example, equations (3)-(5) become:

\begin{align*}
(3') \quad U_t &= \left[w_t h_t + N_t - \tau(w_t h_t) \right]^{1+\eta} - \beta_t h_t^{1+\gamma} \quad \eta \leq 0, \quad \gamma \geq 0 \\
(4') \quad \frac{dU_t}{dh_t} &= \left[w_t h_t + N_t - \tau(w_t h_t) \right]^{1+\eta} [w_t (1 - \tau'(w_t h_t))] - \beta_t h_t^{\gamma} = 0 \\
(5') \quad MRS &= \frac{MUL(h)}{MUC(h)} = \frac{\beta_t h_t^{\gamma}}{[w_t h_t + N_t - \tau(w_t h_t)]^{1+\eta}} = w_t (1 - \tau'(w_t h_t))
\end{align*}

40 To quote MaCurdy et al (1990): “As documented in the surveys of Pencavel (1986) and Hausman (1985), empirical studies … based on econometric approaches incorporating piecewise-linear constraints produce … estimates of compensated substitution responses that have the sign predicted by economic models of consumer choice, which is in contrast to much of the other empirical work on labor supply. This finding of greater consistency with economic theory has been interpreted … as evidence confirming the merits of accounting for taxes using the piecewise-linear approach. Contrary to this interpretation, this paper shows that the divergence in the estimates … follows directly from features of the econometric models that implicitly restrict parameters … The simple estimation approaches impose no restrictions, but maximum likelihood techniques incorporating piecewise-linear budget constraints require … the Slutsky condition to hold at various points in estimation.”
Comparing (5) and (5'), we see that the constant tax rate τ in (5) is replaced by $\tau'(wtht)$, the derivative of the tax function evaluated at earnings level $wtht$ (i.e., the tax on a marginal dollar of earnings). $\tau(wtht)$ can be chosen to provide a good approximation to the actual tax system.

Now, while it is undeniable that the piecewise-linear budget constraint approach must constrain the Hicks elasticity to be positive to generate a sensible econometric model (with probabilities guaranteed to be positive), it is not obvious that this can explain the difference in results between piecewise-linear budget constraint studies and those that use simpler linear regression methods. I say this for two reasons: First, a number of studies that use a piecewise-linear budget constraint approach do nevertheless find Hicks elasticities that are close to zero. Conversely, some papers using simpler methods to handle taxes find large Hicks elasticities.

For example, consider what happened when MaCurdy, Green and Paarsch (1990) applied the same approach as Hausman (1981) to a sample of 1,017 prime age men from the 1975 PSID. Like Hausman, they assume a linear hours equation as in (35) with a random coefficient on non-labor income. Strikingly, MaCurdy et al obtained a wage coefficient of essentially zero and a (mean) income coefficient of -.0071 (see their Table 2, first column). The latter implies an income effect of roughly $w^* (\partial h/\partial N) = (4.4)(-.0071) = -0.031$ and hence a Hicks elasticity of roughly 0.031 at the mean of the data. Thus we have an example where the piece-wise linear approach does yield a very small Hicks elasticity.

There have been other applications where the piecewise-linear approach yielded small Hicks elasticities. A good example is Triest (1990) who applies methods very similar to Hausman (1981) to study 978 married men aged 25-55 in the 1983 PSID. He obtains an income elasticity of essentially zero and Marshallian and Hicks elasticities of roughly 0.05. And recall that the Blomquist (1983) study that I discussed earlier obtained a Hicks elasticity of roughly 0.11 and an income effect of -0.03, which can hardly be called large.

Next consider papers that use “simple” methods but still obtain large Hicks elasticities. A prime example is the classic paper by Hall (1973). Recall that he linearized the budget constraint around the observed wage/hours combination, but did not model the choice of segment. But, like Hausman (1981), he obtained a large Hicks elasticity (0.45).

As for the “simple” approach of assuming a smooth approximation to the kinked budget constraint, as in (3')-(5'), MaCurdy et al (1990) note that this approach also constrains the Hicks elasticity, except now the constraint is a bit weaker: instead of requiring it to be positive, it requires that it can't be "too negative." But the situation is not fundamentally different. As the smooth approximation to the budget constraint is made more accurate, the
bound on the Hicks elasticity gets tighter, converging to a lower bound of zero as the approximation approaches the true constraint. When MaCurdy, Green and Paarsch (1990) apply this approach, they conclude (see page 458): "there is no perceptible difference in the estimates obtained assuming differentiable and piecewise-linear tax functions."

Given these results, it is not clear that the use of piece-wise linear budget constraint methods vs. simpler methods can explain the large divergence in results across the studies I’ve discussed. It is particularly puzzling that Wales and Woodland (1979), Hausman (1981), MaCurdy, Green and Paarsch (1990) and Triest (1990) all applied the piece-wise linear approach to data on married men in the PSID, using data from nearby (and sometimes identical) waves, and yet the former two studies obtained very large Hicks elasticities and income effects while the latter two studies obtained negligible values for each. Indeed, the latter two papers explicitly make note of the fact that this contrast is puzzling.

The excellent replication study by Eklöf and Sacklén (2000) sheds a great deal of light on the reasons for the divergence in results between Hausman (1981) and MaCurdy, Green and Paarsch (1990). Both papers study married men aged 25 to 55 in the 1976 wave of the PSID. The MaCurdy et al sample size is a bit smaller (1018 vs. 1084), because they apply slightly more stringent selection criteria, but Eklöf and Sacklén (2000) show this is not a main reason for differences in results. Rather, the difference appears to arise because the two studies adopt very different definitions of the wage and non-labor income variables.

A key point about the PSID is that it contains questions both about the interview week (e.g., What is your current wage rate?) and about the prior year (e.g., What were you annual earnings and annual hours during the past year?). Hausman (1981) uses the current wage question as his measure of the wage rate, while MaCurdy et al (1990) use the ratio of annual earnings to annual hours. Both of these wage measures have problems:

Hausman’s current wage measure is missing for 87 workers and for 4 workers who were not employed in the survey week, and it is top coded at $9.99 per hour for 149 workers. Hausman imputes these missing wage observations for 240/1084 = 22% of the sample using a regression method. In addition, even an accurately measured current wage is presumably a noisy measure of the wage rate that is relevant for the whole prior year.

MaCurdy et al’s ratio wage measure suffers from the denominator bias problem discussed in Section IV: Say observed hours equal \(h^* = h + \varepsilon \), where \(h \) is true hours and \(\varepsilon \) is measurement error, and we construct the wage as \(w^* = E^*/(h + \varepsilon) \), where \(E^* \) is measured

\[\text{41 The main difference is Hausman (1981) requires that workers not be self-employed at the 1976 interview, while MaCurdy et al (1990) requires they not be self-employed in both 1975 and 1976. This costs 55 people.} \]
earnings. Then the measurement error in hours tends to induce negative covariance between \(h^* \) and \(w^* \). This denominator bias has the potential to drive the wage coefficient negative.

In addition, Hausman (1981) and MaCurdy et al (1990) take very different approaches to measuring non-labor income. Hausman simply imputes an 8% return to equity in owner occupied housing (the only financial asset measured in the PSID). In contrast to this narrow measure, MaCurdy et al (1990) construct a very broad measure by taking total household income minus labor earnings of the husband. The broad measure has the problem that it includes the wife’s income, which may be endogenous (i.e., jointly determined with husband earnings). In contrast, Hausman’s narrow measure simply leaves out many types of non-labor income. The sample mean of MaCurdy et al’s non-labor income measure is three times greater than Hausman’s. Neither includes imputed service flows from consumer durables.

Finally, Hausman (1981) and MaCurdy et al (1990) use different hours measures. MaCurdy et al (1990) use a direct question about hours of work in 1975. Hausman (1981) uses questions about usual hours per week and number of weeks worked in 1975. The mean of MaCurdy et al’s hours measure is 2,236 while that of Hausman’s hours measure is 2,123.

Using the same data as MaCurdy et al, Eklöf and Sacklén (2000) are able to replicate their results almost exactly. That is, the wage coefficient bumps up against the non-negativity constraint and has to be pegged at zero. And the mass of the random non-labor income coefficient also piles up near zero. Then Eklöf and Sacklén (2000) report results of an experiment where, either one by one or in combination, they shift to Hausman’s wage measure, non-labor income measure, sample selection criteria an/or hours measure.

A subset of the results is reproduced in Table 3. The first row presents the replication of MaCurdy et al (1990). The only difference is a slight change the computation procedure that leads to a small increase in the estimated income effect (from about -.037 to -.068).\(^{42}\) The second row shows the effect of adopting Hausman’s sample selection criteria. This leads to a doubling of the income effect to -0.136. But the wage coefficient remains pegged at zero.

In the third row, the authors switch to Hausman’s narrower definition of non-labor income. This has a dramatic effect on the results, as the income effect jumps to -.488. This is actually quite disconcerting. Given that each paper’s definition of non-labor income is quite debatable, and that, as noted in Section IV, it is not at all obvious how one should define non-labor income in a static model (as non-labor income evolves over the life-cycle based on savings decisions), it is unfortunate that results are so sensitive to how it is defined.\(^{43}\)

\(^{42}\) MaCurdy et al (1990) reported it was necessary to constrain the variance of the random income effect to obtain sensible estimates, but Eklöf and Sacklén (2000) did not have this problem in the replication.

\(^{43}\) I was puzzled why the authors maintained a peg of the wage coefficient at zero in this model. With an income
The fourth row gives results using Hausman’s wage measure. Strikingly, the wage coefficient is now positive, implying a small but positive Marshallian elasticity (0.03). But the income effect remains very small (-0.025), implying a Hicks elasticity of only 0.055.

The fifth row shows the effect of simultaneously adopting Hausman’s wage and non-labor income measures. This causes the Marshallian elasticity to jump further to 0.078, but unfortunately the authors do not report the income coefficient for this case. The sixth row shows the effect of simultaneously adopting Hausman’s wage and non-labor income measures, and his sample selection criteria. The Marshallian elasticity remains at 0.078 and the income effect is -.222, giving a fairly large Hicks elasticity of 0.300.

Finally, the sixth row also adopts Hausman’s hours measure. Having adopted all of his variable definitions and sample screens, row 6 is in fact the authors attempt to replicate Hausman (1981). The results have a similar flavor to Hausman’s: the Marshallian elasticity is modest (0.048) but the income effect is -.220, giving a fairly large Hicks elasticity of 0.270.

Based on these results, the authors conclude it is not the piece-wise linear budget constraint approach per se that explains why Hausman (1981) obtained a much larger Hicks elasticity than other authors. Instead, Eklöf and Sacklén (2000) argue that the key differences were Hausman’s use of a direct wage measure and his narrow definition of non-labor income. In particular, the evidence suggests that measuring the wage as an annual earnings divided by annual hours does lead to denominator bias that tends to drive the wage coefficient negative.

As further evidence of this assertion, they point to the special issue on labor supply in the 1990 Journal of Human Resources. In three studies that use a ratio wage measure (Triest (1990), MaCurdy et al (1990), Colombino and Del Boca (1990)) the Hicks elasticity is either negative or runs up against a non-negativity constraint. But in three studies that use a direct wage measure (Blomquist and Hansson-Busewitz (1990), van Soest, Woittiez and Kapteyn (1990) and their own version of MaCurdy et al (1990)), the Hicks elasticity is positive.

The last two rows of Table 3 compare Eklöf and Sacklén’s replication of Hausman (1981) with the results Hausman actually reported. Clearly, they cannot replicate Hausman very precisely. While Hausman obtained a Marshallian elasticity close to zero, the authors obtain 0.048. And while Hausman obtained a large income effect of -0.740, Eklöf-Sacklén obtain a perhaps more plausible value of -0.222.⁴⁴ What accounts for these large differences? The authors’ note they were unable to match Hausman’s sample exactly. They also note that the likelihood function is quite flat in the vicinity of the optimum. In particular, a fairly wide

⁴⁴ Recall that Pencavel (1986) argued the income effect estimated by Hausman (1981) was implausibly large.
range of different values for the mean and variance of the random coefficient on non-labor income produce similar likelihood values. Given this, they speculate that fairly minor changes in the dataset could have produced a fairly large change in the estimates.

Recall that Hausman (1981) calculated that the progressivity of the tax system led to a welfare loss equal to 22% of tax revenues. As we have seen, this value is driven largely by his large estimate of the Hicks elasticity. Given that Eklöf and Sacklén (2000) obtain a mean Hicks elasticity about a third as large as Hausman’s, one is tempted to conclude the implied welfare loss is about a third as large as well. However, as these models assume a distribution of income effects, and as Eklöf and Sacklén (2000) obtain not only a lower mean but also a higher variance, it is not at all clear what a simulation of their model would imply about welfare losses. (It is unfortunate that such a simulation is not available).

Next I take a closer look at Blomquist and Hansson-Busewitz (1990). They model labor supply of 602 married men (aged 25-55) in Sweden, using data from the 1980 Level of Living Survey. The adopt a piecewise-linear approach. One innovation is use of an hours equation that includes a quadratic in wages. They find this provides a significantly better fit than a linear specification, although it has little impact on the main results. The authors use a direct wage measure (like Hausman (1981)) and a broad measure of non-labor income (like MaCurdy et al (1981)). Based on the results in Eklöf and Sacklén (2000) we would predict this combination to lead to a modest positive Marshallian elasticity and a small income effect. It is somewhat comforting that this is roughly what happens – i.e., they obtain Marshallian elasticities of 0.12 to 0.13 in their preferred models, and income effects of only about -.005.

A nice feature of Blomquist and Hansson-Busewitz (1990) is that they plot both the "structural" labor supply equation that would obtain if people maximized utility subject to a linear budget constraint, and whose parameters can be used to infer the underlying utility function, and the "mongrel" or "reduced form" equation that gives desired hours as a function of wages, non-labor income and the existing tax structure. This reduced form equation will vary as the tax system varies. Strikingly, although the “structural” labor supply curve is linear with a positive Marshallian elasticity throughout, the reduced form supply curve is backward bending for wage rates above 26 SEK per hour. This compares to an average gross wage rate of 41.75 SEK and an average after-tax rate of only 14.83 SEK. Thus, a reduced form analysis that fails to account for progressive taxation could easily conclude labor supply is backward bending when this is only a feature induced by the tax system, not by underlying preferences.

Finally, when Blomquist and Hansson-Busewitz (1990) simulate the consequence of shifting to a flat rate tax (which needs to be 37% to generate equivalent revenue) they find
that the welfare loss from taxation falls from 16% to 5% of revenue collected, while annual hours of work increase from 2099 to 2238 (or 6.7%). They also simulate a cut in the national tax rate in the top several brackets by 5 percentage points, from a range of 44% to 58% to a range of 39% to 53%. They simulate that this would increase labor supply by 0.4% while actually increasing tax revenue by 0.6%. This implies that the upper bracket tax rates in Sweden in 1980 actually exceeded the revenue maximizing rates (see equation (1)).

The paper by van Soest, Woittiez and Kapteyn (1990) uses the Dutch Organization of Strategic Labor Market Research (OSA) 1985 survey. This survey contains a direct question about wages on a weekly or monthly basis (which in the latter case is converted to weekly). Consistent with the above conjectures, the authors obtain a Marshallian elasticity of 0.19 and an income effect of -.09, and so have no problems with the non-negativity constraint on the Hicks elasticity (0.28). In my view the more important aspect of this paper is that, as far as I can discern, it was the first (for males) to use simulated data from the model to actually examine model fit. A rather striking failure of the labor supply literature (which it shares with many other literatures in economics) is the lack of effort to examine model fit. What the authors find, perhaps not surprisingly, is that a simple linear labor supply function like (35), combined with a piecewise linear budget constraint, does a very poor job of fitting the observed distribution of hours. In particular, it is completely unable to generate the substantial bunching of male hours at exactly 40 hours per week (See their Figure 1).

The authors attempt to rectify this problem by introducing a demand side constraint on possible hours choices. Each worker is assumed to draw a set of hours points at which he may locate, and a probability of each point is estimated. Of course, offers of 40 hours are estimated to be much more likely than offers of lower hours levels. So this model does fit the spike in hours at 40 (as well as the distribution over other points) quite well. What seems unsatisfactory is that the model contains no rationale for why offers of lower levels of hours are uncommon. One explanation would be start up costs at work, so that productivity rises with hours but starts to decline somewhere after 40. An alternative supply side story for why low levels of hours are uncommon is fixed costs of work (see Cogan (1981) in Section VI).

To summarize, the literature on static models has produced no clear consensus on male labor supply elasticities. Some have claimed that piece-wise linear budget constraint

45 Note that Sweden had an array of payroll, value added and local taxes that brought overall rates to well above the 58% top bracket national rate. In 1980 the upper limit for the sum of national and local rates was set at 85%.
46 The paper does not give information on the construction of the non-labor income variable, but in private correspondence the authors told me that they used a fairly narrow measure that consists only of child benefits (which do not depend on income) and capital income (which few households have).
47 For females see the discussion of Cogan (1981) in Section VI.
methods produce large Hicks elasticities while “simpler” methods produce small elasticities. But Eklöf and Sacklén (2000) found that the major differences in results between Hausman (1981) and MaCurdy et al (1990), as well as between several other studies, could be better explained by different definitions of the wage rate and non-labor income. The use of annual ratio wage measures, as opposed to hourly or weekly measures, tends to generate smaller elasticities, presumably due to denominator bias. And more narrow definitions of non-labor income tend to generate larger estimated income effects. Given the problem of denominator bias, it seems fairly clear that the use of ratio wage measures should be avoided in favor of hourly measures. But the best way to measure non-labor income is not at all clear.

In general, non-labor income may include many components, such as interest income from assets, the service flow from durables, government transfer payments, transfers from relatives, and, in a household context, spouse’s income (or some share thereof). Determining the “right” measure of non-labor income in a static labor supply model is difficult in part because the static model does not provide a framework to even think about asset income. Indeed, in a static model assets should not even exist, as there is no motive for saving. This leads us to an examination of life-cycle labor supply models with savings.

V.B. The Life-Cycle Labor Supply Model with Savings

In dynamic models workers make labor supply decisions jointly with decisions about consumption/savings, and the evolution of non-labor income becomes part of the model. But as I’ll discuss below, estimation of dynamic models is difficult. Thus, some authors have sought to develop alternative approaches that maintain the simplicity of static models while producing estimates that are still consistent with life-cycle behavior.

In an important paper, MaCurdy (1983) developed a scheme for estimating the parameters of a life-cycle labor supply model using techniques no more complicated than instrumental variables. To see how his method works, we return to the life-cycle model of Section III.B, and rewrite equation (22) as:

\[
\beta_i h_i^\tau = \frac{\beta_i h_i^\tau}{\left[w_i(1-\tau_i) h_i + N_i + b_i\right]^\tau} = w_i(1-\tau_i)
\]

It is important to note that, while (41) assumes a flat rate tax, an optimality condition analogous to (41) will also hold in a world with progressive taxation. Then, \(\tau_i \) is the marginal

48 This is not to say that an hourly wage measure is ideal. Its drawback is that we are typically modeling labor supply over a longer period, such as a year. Indeed, this is presumably the reason that many studies chose to use annual wage measures (to match the time period of the wage with that of the observed labor supply behavior).
tax rate the person faces at time \(t \), for the tax bracket in which he/she sits at that time (as in equation (5')). Also, the equation for consumption must be modified. This is illustrated in Figure 3 for a system with two brackets. Consider a person who chooses to locate on segment 2, so \(h_t > H_2 \), where \(H_2 \) is the hours level that renders the person’s earnings high enough that he/she enters tax bracket #2. The consumption level for this person is:

\[
(42a) \quad C_t = w_t(1 - \tau_2)h_t + V_t
\]

where “virtual” non-labor income \(V_t \) is given by:

\[
(42b) \quad V_t = w_t(\tau_2 - \tau_1)H_2 + N_t + b_t
\]

MaCurdy (1983) noted these points, and also that the optimality condition (41) contains only variables dated at time \(t \). Hence, despite the fact that we have a dynamic model with saving, the preferences parameters \(\gamma \) and \(\eta \) can be estimated from a single period of data, provided we utilize not only data on hours and wages, but also on consumption. MaCurdy proposed two methods for doing this, and both play a key role in the subsequent literature:

Method 1: Estimate (41) using two stage least squares. As MaCurdy notes, (41) must hold at a person’s optimal hours choice, regardless of whether there is a progressive income tax or a flat tax (provided the person is not at a kink point). To put (41) in a form that can be estimated we need to introduce a source of stochastic variation in hours and consumption choices. Let the parameter \(\beta_t \) which shifts the marginal rate of substitution (MRS) between consumption and leisure, be given by:

\[
(43) \quad \beta_{it} = \exp(X_{it}\alpha + \varepsilon_{it})
\]

Here \(X_{it} \) represents observed characteristics of person \(i \) that shift tastes for consumption vs. leisure, and \(\varepsilon_{it} \) represents unobserved taste shifters. Now, taking logs of (42), and putting \(i \) subscripts on all variables to indicate person specific values, we get:

\[
(44) \quad \ln w_{it}(1 - \tau_{it}) = \gamma \ln h_{it} - \eta \ln C_{it} + X_{it}\alpha + \varepsilon_{it}
\]

Note that (44) is not a typical labor supply equation (with hours as the dependent variable). Rather, it is simply a relationship among three endogenous variables – the after-tax wage, hours and consumption – that must hold if person \(i \) is making work/consumption choices as suggested by economic theory. All three variables are endogenous as they are correlated with

49 Condition (41) would fail to hold for a person who locates at a kink point. Thus, MaCurdy assumes the tax system is approximated by a smooth function, ruling out kink points.
the taste shocks ε_{it}. This occurs for reasons we have already discussed.\(^{50}\) As a result, it is just a matter of convenience which endogenous variable we call the “dependent” variable.

Given the endogeneity of hours and consumption, we should estimate (44) using instrumental variables. Instruments must be correlated with wages, hours and consumption but not with the unobserved tastes for work ε_{it}. Naturally, the choice of instruments tends to be controversial in any such approach. Estimation of (44) gives us the values of the structural parameters of preferences γ and η, from which we could construct the Marshall, Hicks and Frisch elasticities, as in equation (21).

Method 2: Estimate a labor supply function that is consistent with the life-cycle framework. The idea here is to extend the Hall (1973) approach to the dynamic case simply by redefining virtual non-labor income for period t to include b_t. The approach is illustrated in Figure 3, for the case of a two bracket tax system. Note that if a person locates on Segment #1 then their after-tax wage is $w_t(1-\tau_t)$ and their virtual non-labor income is $V_t = N_t + b_t$. If a person locates on Segment #2 then their after-tax wage is $w_t(1-\tau_2)$ and their virtual non-labour income is $V_t = w_t(\tau_2 - \tau_1)H_2 + N_t + b_t$. Notice that, regardless of segment, virtual non-labor income is given by

$$V_t = C_t - w_t(1-\tau_t)h_t$$

where τ_t denotes the tax rate for the segment on which the person locates at time t. Thus, MaCurdy suggests estimating labor supply equations of the form:

$$h_{it} = h(w_{it}(1-\tau_t), V_{it}, X_{it})$$

To implement this procedure one must pick a particular functional form for the labor supply function in (46). For example, one might chose the linear specification in (35), or the double log specification in (36). Also, as both the after-tax wage rate and virtual non-labor income are endogenous, we must instrument for them, analogous to the approach in Method #1.

MaCurdy (1983) implements both Methods #1 and #2 on a sample of 121 married men in the control group of the Denver Income Maintenance Experiment (a negative income tax experiment) in 1972-75. To implement Method #1 – equation (44) – MaCurdy includes as observed taste shifters (X_{it}) number of children and race. His main instruments are quadratics

\(^{50}\) Obviously, hours are endogenous because a person who is hard working (i.e., has a low value of ε_i) will tend to work more hours, other things being equal. The after-tax wage is endogenous because a person who is hard working will: (i) tend to have a high pre-tax wage because he puts in greater effort, and (ii) tend to face a higher tax rate because he/she works enough hours to be pushed into a high bracket. And consumption is likely to be endogenous because it is a function of the endogenous w and h.

40
in age and education, and interactions between the two. This makes sense given the strong
correlation between education and lifetime earnings, and that fact that both wages and hours
follow hump shapes over the life-cycle. The interactions capture the fact that the peaks of
these humps tend to come later for those with more education. But use of these instruments
requires the strong assumption that age and education are uncorrelated with tastes for work.

MaCurdy estimates that $\gamma = .16$ and $\eta = -.66$. To compare these values to prior
literature, he calculates what they would imply about labor supply elasticities given a linear
budget constraint. It turns out the estimates imply highly elastic labor supply. Using our
formulas for a person with no non-labor income (see equation (21)) the implied Marshallian
elasticity is $(1+\eta)/(\gamma-\eta) = .42$, the Hicks is $1/(\gamma-\eta) = 1.22$, the income effect is $\eta/(\gamma-\eta) = -.80$,
and the Frisch is $1/(.16) = 6.25$. At the mean of the data, MaCurdy calculates a Marshallian
elasticity of 0.70, a Hicks elasticity of 1.47, and an income effect of $w\partial h/\partial N = -0.77.$

Turning to Method #2, MaCurdy considers both linear and double log specifications,
using the same controls and instruments as in Method #1. For the double log he obtains:

$$\ln h_{it} = 0.69\ln w_{it}(1-\tau_{it}) - 0.0016 V_{it} + X_{it}\alpha + \varepsilon_{it}$$

(0.53) (0.0010)

where the figures in parenthesis are standard errors. The log specification gives a Marshallian
elasticity of 0.69, almost identical to that obtained via Method #1 at the mean of the data.

MaCurdy (1983) also evaluates the other elasticities at the mean of the data. This
requires knowing that the mean of $V_{it} = C_{it} - w_{it}(1-\tau_{it})h_{it} = $133 per month, the mean of the
after-tax wage is $2.75 per hour and the mean of hours is 170 per month. In the double log
model the income effect is then $(wh)(1/h)\partial h/\partial V = (468)(-.0016) = -0.75$. This is again almost
identical to the value obtained using Method #1. The Hicks elasticity is thus $.69 + .74 = 1.44.$

For the linear specification the Marshallian elasticity is $(2.75/170)(19.4) = 0.31$, the
income effect is $(2.75)(-.16) = -0.44$ and the Hicks elasticity is 0.75. Thus, the linear model
produces more modest elasticity estimates. Nevertheless, as MaCurdy (1983) notes, all three
approaches (Method #1 and Method #2 with a double log or linear model) give elasticities
that are quite large relative to most of the prior literature. MaCurdy notes this may indicate
that prior estimates were misleading because: “Existing studies of male labor supply rarely
treat measures of wages and income as endogenous variables... Many of these studies ignore taxes or fail to account properly for the endogeneity of marginal tax rates, and none of them recognizes that a household may save or dissave during a period.” But MaCurdy also notes that other factors, like possibly invalid instruments or the small and unrepresentative nature of the Denver Income Maintenance Experiment sample, could have led to upward biased elasticity estimates. The parameter estimates are also rather imprecise (see above).

Altonji (1986) noted that one could rewrite (44) as:

\[
\ln h_{it} = \frac{1}{\gamma} \ln w_{it}(1 - \tau_{it}) + \eta \ln C_{it} - X_{it} \frac{\alpha}{\gamma} + \frac{e_{it}}{\gamma}
\]

By estimating (47) by instrumental variables, we uncover the Frisch elasticity \((1/\gamma)\) directly. Recall the Frisch elasticity is defined as the effect of a change in the wage holding (marginal utility of) lifetime wealth fixed. In (47) consumption serves as a summary statistic for lifetime wealth. If the wage changes but consumption stays fixed it means perceived wealth stayed fixed. This means either (i) that the person expected the wage change, so it does not affect his/her perception of lifetime wealth, or (ii) the person expects the wage change to be very short lived, so that it has a negligible effect on lifetime wealth. Estimation of (47) also enables us to back out \(\eta\) as the ratio of the consumption coefficient to the wage coefficient.

Altonji (1986) estimates (47) using data on married men, aged 25-60, from the 1968-81 waves of the PSID. Two key differences with MaCurdy (1983) are that he uses pre-tax wages, and the PSID measure of consumption includes only food. Altonji also uses a more extensive set of observed taste shifters in \(X\) (i.e., besides children and race he includes age, health, region and year dummies). Recall that one must instrument for consumption and wages both because they are measured with error and because they are presumably correlated with the unobserved tastes \((e_{it})\). A novel feature of Altonji’s paper is that he uses a ratio wage measure (annual earnings over hours) as the independent variable in (47), and then uses a direct question about the hourly wage as an instrument. As long as the measurement error in these two measures is uncorrelated (as seems plausible), the latter is a valid instrument.51 As an additional instrument Altonji uses a measure of the “permanent wage,” constructed by regressing the observed wage on individual fixed effects, education, a quadratic in age, an interaction between age and education, year dummies, health and region.

Altonji (1986) estimates that \((1/\gamma) = .172\) (standard error .119) and that \((\eta/\gamma) = -0.534\) (standard error .386). The implied values of \(\gamma\) and \(\eta\) are 5.81 and -3.10. These imply Frisch,

51 To be in the sample a person must have both wage measures. There are 4367 men who satisfy this criterion. Note that this tilts the composition of the sample towards hourly workers.
Hicks and Marshall elasticities of 0.17, 0.11 and -0.24, respectively, and an income effect of -0.35. This compares to values obtained by MaCurdy (1983) of 6.25, 1.22, 0.42 and -0.80. Reminiscent of the “Hausman-MaCurdy” debate discussed earlier, we again have a situation where authors obtain very different estimates of labor supply elasticities for reasons that are not evident. Does MaCurdy get much higher elasticities because he accounts for taxes and/or has a more complete measure of consumption? Or because he uses different instruments? Or are his results unreliable due to the small and unrepresentative nature of the Denver Income Maintenance Experiment sample? Does rearranging (44) to obtain (47) actually matter? Unfortunately, there is no replication study that attempts to reconcile the Altonji (1986) and MaCurdy (1983) results, so we don’t know the answer to these questions.

A closely related paper is Blundell and Walker (1986). They develop a simple scheme for estimating life-cycle models based on the idea of “two-stage budgeting.” In the first stage, the worker/consumer decides how to allocate his/her “full income” across all periods of life. Full income is defined as the after-tax wage rate times the total hours in a period, plus any exogenous non-labor income, plus net dissaving. Within each period, full income is allocated between consumption and leisure. Thus we have the within period budget constraint:

\[F_t = w_t(1-\tau_t)T + N_t + h_t = w_t(1-\tau_t)(T-h_t) + C_t \]

where \(F_t \) is full income, \(T \) is total time in a period and \(T-h_t \) is leisure.\(^{52}\) One then estimates a labor supply function that conditions on the full income allocated to period \(t \):

\[h_{it} = h(w_{it}(1-\tau_{it}), \ F_{it}, \ X_{it}) \]

Note that this method is in fact identical to MaCurdy’s Method #2. This is because one can always define a segment of a budget constraint in terms of the after-tax wage and either full income or virtual non-labor income (\(V_t = C_t - w_t(1-\tau_t)h_t \)). Thus, (46) and (49) are alternative expressions for the same labor supply function.

Intuitively, the full income allocated to period \(t \) plays a role analogous to consumption in MaCurdy’s Method #1 or virtual income in his Method #2. That is, if the wage increases but full income allocated to the period is held fixed, it means that the wage increase did not make the person feel wealthier (i.e., it did not relax his/her lifetime budget constraint).

Blundell and Walker (1986, p. 545) argue there is no need to instrument for \(F_{it} \), even if it is a choice variable, as it is plausible that taste shifters that affect allocation of resources

\(^{52}\) Given progressive taxes, \(N_t \) could be defined to include the virtual non-labor income for the linearized budget constraint, just as before.
over the life-cycle are independent of those that affect choices within a period. But this argument seems strained. For instance, one would plan to allocate more resources to periods when tastes for consumption and/or leisure are likely to be high than toward other periods.

In order to derive a labor supply function, Blundell and Walker (1986) consider a case where the indirect utility function has the Gorman polar form:

$$\begin{align*}
U_t &= G \left[\frac{F_t - a(w_t(1 - \tau_t))}{b(w_t(1 - \tau_t))} \right] \\
\end{align*}$$

Actually, as we will see below, Blundell and Walker consider a more complex model of joint labor supply of couples, where the price of consumption goods varies over time in addition to the wage. But I will abstract from those complications for now. Obviously, we have that:53

$$\begin{align*}
\frac{\partial U_t}{\partial w_t(1 - \tau_t)} &= h_t \cdot \frac{\partial U_t}{\partial F_t} \\
\end{align*}$$

Applying (51) to (50) we can obtain the labor supply equation:

$$\begin{align*}
h_t &= \frac{G'(\cdot) \left\{ \frac{-b'(\cdot)}{b^2(\cdot)} [F_t - a(\cdot)] - \frac{a'(\cdot)}{b(\cdot)} \right\}}{G'(\cdot) \frac{1}{b(\cdot)}} \\
&= -a'(w_t(1 - \tau_t)) - \frac{b'(w_t(1 - \tau_t))}{b(w_t(1 - \tau_t))} [F_t - a(w_t(1 - \tau_t))] \\
\end{align*}$$

As Blundell and Walker (1986) note, the researcher has a great deal of flexibility in choosing the $a(\cdot)$ and $b(\cdot)$ functions. Thus, labor supply can be allowed to depend on the wage and full income in rather complex ways. This has a downside in terms of interpretability, in that, in contrast to the MaCurdy (1983) and Altonji (1986) specifications, elasticities will have to be simulated. As best as I can ascertain, the basic specification that Blundell and Walker (1986) estimate for men has the form:

$$\begin{align*}
h_t &= (T_m - \gamma_m) - \frac{\beta_m}{w_t} \left[F_t - \gamma_m w_t^m - \gamma_f w_t^f - \gamma_c p_t^c - \gamma_{fc} (w_t^f p_t^c)^{1/2} \right] \\
\end{align*}$$

Here w_t^m is the after tax wage for the husband, w_t^f is the after tax wage for the wife, p_t^f is the price of consumption goods and F_t is full income as given by (48).

53 This equality holds because, if the after-tax wage increases by one unit the person has h_t extra units of income to spend on consumption. But if full income increases by one unit the person has only one extra unit of income to spend on consumption. Thus the derivative on the left of (51) must be h_t times greater than that on the right. That h_t is held fixed when the wage increases is a consequence of the envelope theorem. That is, for very small changes in the wage, a consumer can’t do better than to spend all the extra income on consumption. Any utility gain that might be achieved by reallocating full income between consumption and leisure is trivially small.
Blundell and Walker (1986) estimate this model on a sample of families from the 1980 FES. Here I focus on the male labor supply results. Some limitations of the analysis should be noted. First, as I stated earlier, the authors do not instrument for full income or wages. Second, the analysis is limited to families where the household head is a manual worker, shop assistant or clerical worker, giving 1378 households (with a female participation rate of 64%). The authors do not indicate why they choose to restrict the sample in this way. Third, the consumption measure was limited, including food, clothing, services and energy but excluding housing, transport, alcohol and other important categories.

Averaging over the sample, the authors simulate a Frisch elasticity for men of only 0.026 and a Hicks elasticity of 0.024. Similar small values are obtained for all demographic subgroups examined. The authors report an elasticity of male hours with respect to full income of -0.287. Based on figures reported in the paper, I calculate that full income is £267 per week on average, and that male after-tax earnings is (2.08)(39.8) = £82.78 per week on average. These figures imply an income effect of \((wh/F)[(F/h)(\partial h/\partial F)] = -0.089^{54}\) and a Marshallian elasticity of -0.065. It is notable that the authors use a ratio wage measure (i.e., usual earnings over usual hours) to construct wage rates. As discussed earlier, this may lead to downward bias in elasticity estimates, particularly if no instrument is used to correct for measurement error. This may account in part their low elasticity estimates.

Starting with MaCurdy (1981), a number of studies have attempted to use equations similar to (25) from Section III.B to estimate the Frisch elasticity directly. In order to put (25) in a form amenable to estimation we use (43) to substitute for the taste shifter \(\beta_i\) and obtain:

\[
(54) \quad \Delta \ln h_i = \frac{1}{\gamma} \Delta \ln w_i(1 - \tau_i) - \frac{1}{\gamma} \ln \rho(1 + r_i) + \frac{\alpha}{\gamma} \Delta X_i + \frac{1}{\gamma} \xi_i + \frac{1}{\gamma} \Delta \varepsilon_i
\]

In contrast to MaCurdy’s Methods #1 and #2 estimation of (54) does not require consumption data. However, it does require hours and wage data for at least two periods, and it will only deliver an estimate of \(\gamma\) and not of \(\eta\).

A key point is that the error term in (54) consists of two components. The first is the surprise change in the marginal utility of consumption, multiplied by the factor \((1/\gamma)\), which I denote by \(\zeta_i = (1/\gamma)\xi_i\). This arises in part due to surprise wage growth. Surprise wage growth makes a person wealthier, leading to a negative income effect (i.e., as long as wage growth contains a surprise component we have \(\text{Cov}(\xi_i, \Delta w_i) < 0\)). Thus, wage growth is endogenous.

\[54\] Consistent with this calculation, when the authors simulate a £50 reduction in non-labor income it leads to an average 2.5 hour increase in weekly hours for males, implying a derivative of about \(-2.5/50 = -0.05\). Multiplying this by the mean male after-tax male wage rate of 2.08 gives an income effect of about -0.10.
in (54). Of course, errors in forecasting wage growth arise due to new information that is revealed between \(t-1 \) and \(t \) (e.g., unexpected recession, illness or plant closure). Thus, valid instruments for estimation of (54) should have the property that they were in the agent’s information set at time \(t-1 \), so they could have been used to forecast wage growth.\(^{55}\)

The second component of the error term arises from the change in tastes for work from \(t-1 \) to \(t \), which I denote by \(\Delta e^*_it = (1/\gamma)\Delta e_{it} \). I have already discussed at length in Section IV the multiple reasons why we would expect tastes for work to be correlated with both gross and after-tax wages. Thus, valid instruments for estimation of (54) should also have the property that they are uncorrelated with changes in tastes for work.\(^{56}\)

MaCurdy (1981) estimates (54) using annual data on 513 married men observed from 1967-76 in the PSID. To be included in the sample they must have been 25 to 46 years old in 1967 and married to the same spouse during the sample period. MaCurdy uses a complete set of time dummies to pick up the log interest rate terms in (54), rather than using a particular interest rate variable. No observed taste shifter variables \(X \) are included.\(^{57}\) It is notable that MaCurdy does not adjust wages for taxes.\(^{58}\) Hence, the specification is simply a regression of annual log hours changes on log wage changes, along with a set of time dummies.

MaCurdy presents his analysis in setting where workers have perfect foresight about their future wages. But, as he notes, his results extend to the uncertainty case provided he uses as instruments for wages variables that were known to a worker at time \(t \) or before, so that the worker could have used these variables to forecast wage growth from time \(t-1 \) to \(t \).

Provided the worker forecasts wage growth rationally, such instruments will be uncorrelated with the error component \(\zeta_{it} \) which arises because of errors in forecasting wage growth. The instruments that MaCurdy uses to predict wage growth are by now familiar: quadratics in age and education as well as age/education interactions, parental education and year dummies.

To gain intuition for how this procedure identifies the Frisch elasticity, it is useful to consider a two-stage least squares (2SLS) approach. In stage one, we regress wage growth on functions of age and education to obtain predicted wage growth over the life-cycle. In stage two, we regress hours growth on predicted wage growth. Thus, the coefficient on predicted

\(^{55}\) This idea of using variables that economic agents use to make forecasts as instruments in dynamic models originated in work by McCallum (1976) and Sargent (1978).

\(^{56}\) In Section IV I noted that many authors adopt a view that tastes for work can be decomposed into a permanent component that may be correlated with wages, and idiosyncratic shocks that are exogenous. In that case, the first differencing in (54) eliminates the permanent component. It may be more plausible that certain instruments are uncorrelated with changes in tastes for work than with tastes in levels. Education is a good example.

\(^{57}\) Taste shifters often included in \(X \) in other studies include age, number and ages of children, marital status, etc.

\(^{58}\) It may be argued that taxes will largely drop out of (54) if the marginal tax rate a person faces does not change too much from year to year. Altonji (1986) makes this argument explicitly.
wage growth captures how hours respond to predictable variation of wages of the life-cycle – i.e., the extent to which people substitute their time inter-temporally and allocate more work hours to periods when wages are relatively high. This is exactly the Frisch elasticity concept.

Using this approach, MaCurdy (1981) obtained a Frisch elasticity of only 0.15, with a standard error of 0.98. It is striking to compare this to the Frisch elasticity of 6.25 obtained by MaCurdy (1983) using the Denver data, where he adopted the approach of using consumption to proxy the marginal utility of wealth. But, as Altonji (1986) obtained 0.172 using a similar consumption-based approach, and Blundell and Walker (1986) obtained 0.026 using two-stage budgeting, the high Frisch elasticity in MaCurdy (1983) starts to look like an extreme outlier. Furthermore, as the Frisch is in theory an upper bound on the Hicks and Marshallian, this would lead one to conclude labor supply elasticities are small for men in general.

But before reaching this conclusion, it is important to keep two points in mind: One is the large standard error (0.98) on MaCurdy’s estimate. This suggests instruments such as age and education do a very poor job of predicting wage changes. Second, as noted earlier, taking the change in wages as in (54) exacerbates measurement error problems, which may bias the coefficient on wage changes toward zero. The two issues are related, as one needs good predictors of true wage changes to correct the measurement error problem.

Altonji (1986) tried to address this problem by using a better instrument for wage changes. As I noted earlier, he uses two wage measures from the PSID, one serving as the wage measure in the labor supply equation, the other serving as an instrument. Using a PSID sample similar to MaCurdy’s, and using similar predictors of wage changes (quadratic in age and education, etc.) he gets an R-squared in the first stage prediction equation of only .008. Then, in estimating (54) he gets a Frisch elasticity of .31, with a large standard error of .65. But when Altonji uses his alternative wage change measure as an additional instrument, he gets a much better R-squared of .031 in the prediction equation.\(^{59}\) Then, in estimating the labor supply equation, he gets a Frisch elasticity of .043, with a standard error of only .079. Thus, we seem to have a rather tight estimate of a small Frisch elasticity. The problem here, of course, is that the alternative wage change measure is only a valid instrument under the strong assumption that workers do have perfect foresight about wage changes. Otherwise, any wage change measure will be correlated with \(\xi_t\).\(^{60}\)

Angrist (1991) proposes to deal with the measurement error problem using grouped

\(^{59}\) This may still seem small, but is actually not bad given the large sample size of roughly 4000 observations, as indicated by the highly significant F statistic of 129.

\(^{60}\) Given this problem, Altonji tried using the lagged wage change as an instrument, as the lag would have been known at time \(t\). But it is a poor predictor, and the standard error jumps to .45.
data estimation. That is, he works with the equation:

\[\ln \bar{h}_{it} - \ln h_{i,t-1} = \frac{1}{\gamma} \left(\ln w_{it}(1-\tau_i) - \ln w_{i,t-1}(1-\tau_{i-1}) \right) + f(t) + \zeta_{it} + \frac{1}{\gamma} (\epsilon_{it} - \epsilon_{i,t-1}) + e_t \]

where \(\bar{X}_i \) denotes the sample mean of \(X_i \) over all people \(i \) observed in year \(t \). The idea is that, while the individual log hours and log wages are be measured with error, this will largely cancel out when we average over people.\(^{61}\) The additional error term \(e_t \) arises from error in calculating true means of log wages and hours using a finite sample.

Notice that I have substituted a function of time \(f(t) \) for the interest rate variable in (54). MaCurdy (1981) and Altonji (1986) both used a complete set of year dummies to pick up interest rates. But that will not work here because a complete set of year dummies would enable one to fit changes in average hours perfectly and the Frisch elasticity \((1/\gamma)\) would not be identified. Identification requires that \(f(t) \) be specified as a low order polynomial in time.

Now, it is important to consider whether estimation of (55) actually uncovers labor supply parameters, or some mongrel of supply and demand factors. For estimation of (55) to identify the Frisch elasticity, we require that the variation in average wages be induced by anticipated shifts in labor demand (e.g., anticipated productivity growth).

But the error term in (55) includes the mean of the aggregate surprise variable \(\zeta_{it} \). This aggregate surprise term would arise from \textit{unexpected aggregate productivity shocks}. Of course, these aggregate shocks would alter the average wage, and induce income effects on aggregate labor supply. Thus, for estimation of (55) to identify the Frisch elasticity, \(f(t) \) must capture such unexpected aggregate shocks, so that \(\zeta_{it} \) drops out.

The error term in (55) also includes \((\epsilon_{it} - \epsilon_{i,t-1}) \), the average change in tastes for work. If there are aggregate taste shocks, we would expect a negative correlation between \((\epsilon_{it} - \epsilon_{i,t-1}) \) and the change in average wages (as increased labor supply would drive down wages in equilibrium). So we must assume aggregate taste shocks are captured by the time polynomial \(f(t) \) as well. In summary, for (55) to represent a supply equation, it is necessary that \(f(t) \) adequately captures aggregate taste and productivity shocks. [An alternative is to use demand side instruments, but Angrist does not pursue this route.]

With these caveats in mind, let’s consider Angrist’s results. He uses PSID data from 1969-79, and takes a sample of 1437 male household heads aged 21 to 64 with positive hours and earnings in each year. He constructs average log hours and log wages for the sample

\(^{61}\) Of course, this requires that the measurement error in log wages (and in log hours) is additive.
members in each year, and uses these to estimate (55). If the trend term \(f(t) \) is left out, the estimate of the Frisch elasticity is -0.132 (s.e. = .042), which violates economic theory. This clearly occurs because in 1969-79 there was a secular downward trend in average male hours and a secular upward trend in wages. When a linear trend is included in the model it picks this up, and Angrist obtains a Frisch elasticity of 0.556 (s.e. = .124). Using a quadratic trend he obtains 0.634 (s.e. = .205). Specification tests do not reject the linear trend model, although the test may have little power given the small sample size.

Regardless, these estimates provide some evidence for higher values of the Frisch elasticity than results from most of the prior literature would suggest. However, it is unclear if Angrist obtains the higher value because of a superior method of handling measurement error or because the results are contaminated by aggregate shocks (not captured by \(f(t) \)) that induce a positive correlation between wages and hours.

A related paper is by Browning, Deaton and Irish (1985), who show how one can estimate the Frisch elasticity using repeated cross section data instead of true panel data. First, they show how to derive a version of the Frisch labor supply function that has the wage change in levels (not logs) as the dependent variable, giving an equation of the form:

\[
\ln w_{it} - \ln w_{i,t-1} = \beta_1 \ln (1 + r_{it}) - \alpha X_{it} - \zeta_{it} + \epsilon_{it} - \epsilon_{i,t-1}
\]

To estimate (56), the authors use data on married men from the FES for the 7 years from 1970-76. The FES does not track individuals through time. Rather it takes a random sample of the population in each year. Thus, it is not possible to take first differences like \(h_{it} - h_{i,t-1} \) for individual people \(i \). Instead Browning et al construct 8 cohorts from the data: men who were 18-23 in 1970, men who were 24-28 in 1970, up to men who were 54-58 in 1970. (Note: members of the first cohort are 24-29 in 1976 when the data ends, while members of the last cohort are 60-64. Thus, the data cover all ages from 18 to 64.) The authors then take cohort specific means of each variable in (56) for each year of data. This gives:

\[
\ln w_{ct} - \ln w_{c,t-1} = \beta_1 \ln (1 + r_{it}) - \alpha X_{ct} - \zeta_{ct} + \epsilon_{ct} - \epsilon_{c,t-1}
\]

Here, for instance \(\ln w_{ct} \) is the mean of the log wage for people in cohort \(c \), \(c=1,\ldots,8 \) in year \(t \), \(t=1970,\ldots,76 \). Notice that \(\zeta_{ct} \) arises from the mean of the surprise shock to the marginal utility of wealth for members of cohort \(c \) in year \(t \). This may differ among cohorts because different

62 It is interesting that when Angrist simply estimates (55) on the micro data, using a linear trend, he obtains a Frisch elasticity of -0.267 (s.e. = 0.008). But when he estimates the hours equation in levels he obtains -0.063 (s.e. = 0.005). This illustrates how first differencing exacerbates the downward bias in the wage coefficient.
cohorts are affected differently by aggregate shocks in period t. For example, an unexpected recession in year t may lead to larger unexpected wage reductions for younger workers.

Similarly, ϵ_{ct} is the mean taste shock for cohort c in year t. As I noted earlier, writing the labor supply equation in terms of aggregate or cohort means highlights the potential existence of aggregate shocks. If aggregate taste shocks exist, they would alter equilibrium wages, and (57) would no longer represent a labor supply relationship. To deal with this problem we require “demand side” instruments that generate exogenous variation in wages. And, given the existence of aggregate surprise changes to lifetime wealth (captured by the ζ_{ct}) it is necessary that any instruments we use to predict wage growth be known at time $t-1$.

Browning et al (1985) use time dummies to pick up the aggregate shocks, an approach that is feasible for them (in contrast to Angrist) because they observe multiple cohorts at each point in time. However, this approach assumes aggregate shocks affect all cohorts in the same way, a point raised by Altug and Miller (1990) that I’ll return to below.

To estimate (57) Browning et al (1985) use as instruments a quadratic in age along with lagged wages. They include number of children as observed taste shifters in X_{ct}. The wage measure is “normal” weekly salary divided by normal weekly hours, and taxes are not accounted for. The main results, which they report in their Table 4 row 4.6, indicate that the Frisch elasticity is very small. The estimate of β in (57) is 0.13, with a standard error of .27. Given this functional form, the Frisch elasticity is roughly β/h which is $3.77/43 = 0.09$ at the mean of the data, implying very little intertemporal substitution in labor supply. Indeed, only the year dummies (and, marginally, children) are significant in the equation.

Based on this result, the authors argue “there is a marked synchronization over the life-cycle between hours worked and … wage rates …” but “the characteristic hump-shaped patterns of … hours … though explicable in terms of life-cycle wage variation … can be explained as well as or better … as the response of credit-constrained consumers to the variation in needs accompanying the birth, growth and departure of children.” This quote illustrates one of two possible reactions to finding the Frisch elasticity is very small:

One possibility is to maintain that the life-cycle model is valid but that preferences are such that people are very unwilling to substitute hours intertemporally (i.e., $\gamma >> 0$). Then, as the Frisch elasticity is an upper bound on the Hicks and Marshallian, we must conclude the other elasticities are small as well.

Alternatively, one could conclude, as do Browning et al. (1985), that consumers are credit constrained. In this case the life-cycle model is invalid, and the static model is in fact appropriate. Then the Frisch elasticity is meaningless, and estimates that it is small tell us
nothing about possible values of the Hicks or Marshallian. Of course, if we abandon the life-cycle model we need some alternative explanation for variation in assets over the life-cycle.63

Now let’s consider further the issue of aggregate shocks. It is important to note that the presence of aggregate surprise variables like ζ_{it} or ζ_{it} is not only an issue in studies like Angrist (1991) and Browning, Deation and Irish (1985) that work with sample or cohort means. Taking means just makes the issue more salient. The same issue is implicitly present in studies like MaCurdy (1981) and Altonji (1986) that use micro panel data to estimate versions of (54). The potential problems created by aggregate shocks for estimation of (54) were stressed by Altug and Miller (1990). In particular, they argue that use of time dummies to “soak up” the mean of the aggregate shock in each period may not solve the problem.

Specifically, let $(\zeta_{it} - \zeta_{it})$ be the idiosyncratic surprise for household i at time t. Having included time dummies D_t in equation (54), it takes the form:

$$\Delta \ln h_{at} = \frac{1}{\gamma} \Delta \ln w_{at} (1 - \tau_t) + D_t - \frac{\alpha}{\gamma} \Delta X_{it} + (\zeta_{it} - \zeta_{it}) + \frac{1}{\gamma} (\varepsilon_{it} - \varepsilon_{i,t-1})$$

where now the error term includes only the idiosyncratic surprise terms $(\zeta_{it} - \zeta_{it})$ along with unobserved taste shifters.64 The key point in Altug and Miller (1990) is that, while $(\zeta_{it} - \zeta_{it})$ is mean zero by construction, it may be systematically related to instruments like age and education that are typically used to predict wage growth in this literature.

For example, suppose the sample period contains an adverse productivity shock in year t, but that low education workers are more adversely affected. Thus, low education workers have relatively large values for ζ_{it} (as a positive ζ_{it} represents a surprise negative shock to lifetime wealth). Letting S_t denote education, we have $\text{Cov}[S_t, (\zeta_{it} - \zeta_{it})] < 0$. Now, this would not invalidate education as an instrument if the sample contained some other years where shocks to lifetime wealth tended to favor low education workers. However, the key point is that the sample must consist of a fairly large number of years before we could be confident that such favorable and unfavorable shocks roughly cancelled out.

Altug and Miller (1990) do not seek to “solve” this problem. Instead, they explicitly adopt assumptions that make it vanish. Specifically, they assume that workers have complete

63 There is of course a huge parallel literature testing the life-cycle model by looking for evidence of liquidity constraints that prevent people from using assets to smooth consumption over the life-cycle (see, e.g., Keane and Runkle (1992)). It is beyond the scope of this survey to discuss that literature, except to mention that whether liquidity constraints are important determinants of savings behavior remains controversial.

64 Note that for simplicity this discussion ignores the possible existence of aggregate taste shocks. In that event, (58) would be modified to also subtract off the time specific means of those taste shocks.
insurance against idiosyncratic shocks, so the \((\xi_{it} - \xi_{it+1})\) terms vanish. Of course, all models are abstractions, so we should not dismiss a model just because of an implausible assumption like complete insurance. And, as Altug and Miller argue, with the existence of unemployment insurance, family transfers, etc., the existence of complete insurance, while obviously false, might not be such a bad approximation. The real questions are (1) what does the assumption buy you, and (2) does it severely bias our estimates of parameters of interest?

Now let’s see how Altug and Miller (1990) exploit the complete insurance assumption. First, return to equation (23) and make the person subscripts explicit:

\[(23') \quad [C_{it}]^\eta = E_t \rho (1 + r_{t+1}) [C_{i,t+1}]^\eta \quad \eta \leq 0\]

Recall that \([C_{it}]^\eta\) is the marginal utility of consumption at time \(t\), and (23') describes how it evolves over the life-cycle, given the worker makes optimal consumption/savings decisions. Note that the marginal utility of consumption in period \(t\) is equivalent to the “marginal utility of wealth” at time \(t\), which I’ll denote \(\lambda_{it}\). This is the increment in lifetime utility that the consumer can achieve if we give him/her an extra unit of assets (or wealth) at the start of period \(t\) (more formally, the Lagrange multiplier on the budget constraint). The equivalence \(\lambda_{it} = [C_{it}]^\eta\) arises because, for a small increment in wealth at time \(t\), the consumer can’t do significantly better than to simply spend it all at once.\(^{65}\)

Now, to assume away idiosyncratic risk, Altug and Miller (1990) assume that:

\[(59) \quad \lambda_{it} = \mu_i \lambda_i\]

A person \(i\) with a low \(\mu_i\) has a relatively low marginal utility of wealth, meaning he/she is relatively rich. But a person’s position in the wealth distribution stays constant over time. Aside from interest rates and discounting, the only source of over-time variation in the marginal utility of wealth is aggregate shocks that cause movements in \(\lambda_i\).

Given this assumption, Altug and Miller can rewrite (23’) as:

\[(60) \quad \lambda_{it} = E_t \rho (1 + r_{t+1}) \lambda_{i,t+1} \quad \Rightarrow \quad \mu_i \lambda_t = \rho \mu_i E_t (1 + r_{t+1}) \lambda_{i,t+1} \quad \Rightarrow \quad \lambda_t = \rho E_t (1 + r_{t+1}) \lambda_{t+1}\]

Then (23) and (24) become:

\[(61) \quad \rho (1 + r_{t+1}) \lambda_{t+1} = \lambda_t (1 + \xi_{t+1}) \quad \Rightarrow \quad \Delta \ln \lambda_t \approx - \ln \rho (1 + r_t) + \xi_t\]

\(^{65}\) This is a simple application of the “envelope theorem.” If we give the consumer a small increment of assets at the start of period \(t\), any incremental gain in lifetime utility he/she might achieve by optimally allocating tiny increases in consumption over all remaining periods of the life, so as to satisfy (23), would be trivially small.
Notice also that, using (61), equation (54) becomes:

\[
\Delta \ln h_{it} = \frac{1}{\gamma} \Delta \ln w_{it} (1 - \tau_{it}) - \frac{\alpha}{\gamma} \Delta X_{it} - \frac{1}{\gamma} \left[\ln \rho (1 + \eta) \right] + \frac{1}{\gamma} \xi_{it} + \frac{1}{\gamma} (\epsilon_{it} - \epsilon_{it-1})
\]

Compared to (54), this equation has the almost imperceptible difference that the surprise term \(\zeta_t = \xi_t / \gamma \) no longer has an \(i \) subscript, so it really is just an aggregate shock, and it can be appropriately captured with time dummies.

But Altug and Miller (1990) do not make this point simply as a critique of other work (or at least its interpretation). They note that if we adopt the assumption (59), and utilize the fact that \(\eta \ln C_{it} = \ln \lambda_{it} = \ln \lambda_{it} + \ln \mu_{it} \), then we can first difference (47) to obtain:

\[
\Delta \ln h_{it} = \frac{1}{\gamma} \Delta \ln w_{it} (1 - \tau_{it}) - \frac{\alpha}{\gamma} \Delta X_{it} - \frac{1}{\gamma} \left[\ln \lambda_{it} - \ln \lambda_{i,t-1} \right] + \frac{1}{\gamma} \Delta \epsilon_{it}
\]

Using (63) we can actually estimate the changes in the \(\ln \lambda_i \) as the dummy coefficients in estimating equation (58). That in turn means that, given data on interest rates \(r_n \), we can also estimate the asset pricing equation (61), with the only unknown parameter being \(\rho \).

So the main point of Altug and Miller (1990) is to use data on hours, consumption, wages, and rates of return to jointly estimate (i) a within period optimality condition like (47), a first difference hours equation like (63), and an asset pricing equation like (61), using the cross equation restrictions (e.g., \(\gamma \) appears in multiple places) to get a more efficient estimate of the Frisch elasticity.66 They estimate their model on a sample of continuously married men from the PSID for 1967-1980. The men had to be no older than 46 in 1967.

A complication is that Altug and Miller (1990) do not use the simple utility function (3) that was used by MaCurdy (1981) and Altonji (1986). They use a more complex function where wives’ leisure is non-separable from consumption and male leisure. In that case the analogue to (47) is the husband’s demand for leisure equation:

\[
\ln L^h_{it} = \frac{1}{\bar{\gamma}} \ln w_{it} + \frac{\eta}{\bar{\gamma}} \ln C_{hit} - \frac{\alpha}{\bar{\gamma}} X_{hit} + \frac{\pi}{\bar{\gamma}} \ln L^\xi_{it} + \frac{\epsilon_{it}}{\bar{\gamma}}
\]

where now \((1/ \bar{\gamma}) \) is the intertemporal elasticity of substitution in leisure and \(L^\xi_{it} \) is the wives’ leisure. In estimating (64) jointly with the rest of the system, the authors obtain a Frisch elasticity of leisure with respect to the wage of 0.037, with a standard error of 0.013. This precise estimate contrasts with an estimate of .018 with a standard error of 0.087 that they

66 For good measure they throw in a wage equation as well. There are no cross equation restrictions between this and the other three equations, but allowing for the error covariance increases efficiency.
obtain when they do not include the first difference hours equation and the asset equation in
the system. Thus we see that their approach does lead to a substantial efficiency gain.

Given that leisure is normalized to a fraction of total time, we have that the Frisch
elasticity of male labor supply with respect to the wage implied by the authors’ estimate is:

\[
\frac{\partial \ln h}{\partial \ln w} = \frac{w h}{h w} = \frac{w (1 - l)}{l w} = -\frac{l}{h} \left[\frac{w l}{l w} \right] = -\frac{1 (-0.037)}{h} \approx \frac{8760}{2300} (0.037) = 0.14
\]

Thus, despite the different methodology, the estimate is similar to the rather small values
obtained by MaCurdy (1981) and Altonji (1986).

To conclude, it is worth pointing out some limitations of the study. One is that it does
not incorporate taxes and another is that it uses a ratio wage measure. Finally, an odd aspect
of Altug and Miller (1990)’s results is that the coefficient on consumption in (64) is .003,
which implies \(\eta = 0.08 \). This violates the theoretical restriction \(\eta < 0 \) (diminishing marginal
utility of consumption). However, the coefficient is so imprecisely estimated that one can’t
reject that utility is linear in consumption (\(\eta = 0 \)). But log utility (\(\eta = -1 \)) is rejected. So all
that can be discerned is that \(-1 < \eta < 0\), which is almost the whole plausible range for \(\eta \).

Next I’ll consider further developments, beginning in the late 90s, in the line of work
that adopts the two-stage budgeting approach (i.e., MaCurdy Method #2 and Blundell and
Walker (1986)). Blomquist (1985) noted that this approach has a problem in contexts with
progressive taxation. The basic idea is that an increase in labor supply in period \(t \), holding
consumption fixed, will cause a person to have more assets at the end of period \(t \). This, in
turn, leads to higher asset income in period \(t+1 \). And this in turn may increase the person’s
tax bracket at \(t+1 \). Hence, we no longer achieve the simplification that, conditional on full
income allocated to time \(t \), we can model a person’s time \(t \) decisions as if he/she were
choosing labor supply subject to a one-period budget constraint.

Ziliak and Kniesner (1999) attempt to deal with the problem of progressive taxation
within the two-stage budgeting framework. Following Blomquist (1985), they note that the
two-stage approach can be salvaged by writing labor supply in period \(t \) as conditional on
assets at both the start and end of the period. The basic idea is that, by holding end of period
assets fixed, one shuts down any channel by which increased labor supply at \(t \) might affect

67 The greater imprecision of the \(\eta \) estimate compared to prior studies may stem from attempting to estimate the
extent of nonseparability between female non-market time and both consumption and male labor supply, which
adds female non-market time as an additional regression in the labor supply equations. Altug and Miller (1990)
reject the joint hypothesis that female non-market time is separable from both consumption and male labor
supply, but their estimates are too imprecise to determine which quantity it is non-separable with.
the budget constraint at \(t+1 \). Thus, they estimate a linear labor supply equation of the form:

\[
h_{it} = \beta + \beta_w w_{it}(1 - \tau_{it}) + \beta_{A1} A^*_{it,t-1} + \beta_{A2} A_{it} + X_{it} \alpha + \mu_i + \epsilon_{it}
\]

In this equation \(A^*_{t-1} \) is “virtual wealth,” which plays a role analogous to virtual non-labor income in static piecewise-linear budget constraint models (see Figure 1). It is defined as:

\[
A^*_{t-1} = A_{t-1} + \frac{(\tau_{it} - \tau^d_{it})I_{it}}{r_t}
\]

where \(\tau^d_{it} \) is the average tax rate paid by person \(i \) in period \(t \) on their income \(I_{it} \), and \(r_t \) is the risk free rate of interest. Note that \(A^* \) can be interpreted as a virtual asset level.\(^{68}\)

Ziliak and Kniesner (1999) estimate (65) using data on 532 married men from the PSID. They were 22-51 years old in 1978 and worked in every year from 1978 to 1987. The asset measure is home equity plus the capitalized value of rent, interest and dividend income.

In constructing the wage measure Ziliak and Kniesner seek to avoid denominator bias by using the hourly wage rate for hourly workers. For workers paid weekly, they divide weekly earnings by 40 hours rather than actually observed hours (and so on for workers paid over other time periods). This procedure avoids denominator bias, at the cost of introducing a different type of measurement error. In forming taxable income and marginal tax rates the authors use information in the PSID to estimate standard and itemized deductions.\(^{69}\)

Observed taste shifters included in \(X_{it} \) are age, health and number of children.

Equation (65) contains three endogenous variables: the after-tax wage, end of period assets, and start of period virtual assets. All three variables may be correlated with the individual fixed effect \(\mu_i \) (i.e., a person with high tastes for work will tend to have both a high wage and high asset levels). Thus, as a first step toward estimating (65), the authors take first differences to eliminate the individual fixed effect \(\mu_i \):

\[
\Delta h_{it} = \beta_w \Delta w_{it}(1 - \tau_{it}) + \beta_{A1} \Delta A^*_{it,t-1} + \beta_{A2} \Delta A_{it} + \Delta X_{it} \alpha + \Delta \epsilon_{it}
\]

Now, \(w_{it}(1 - \tau_{it}) \) and \(A_{it} \) are presumably correlated with \(\epsilon_{it} \), as a high taste for work at \(t \) will tend to both (i) shift a person into a higher tax bracket and (ii) lead to higher assets at the end of the period. Furthermore, start of period virtual wealth \(A^*_{t-1} \) is also correlated with \(\epsilon_{it} \). If a high

\(^{68}\) The quantity \((\tau - \tau^d)I/r \) is the hypothetical amount of extra assets needed to get the person up to the virtual non-labor income level associated with their budget segment.

\(^{69}\) The authors use IRS data to calculate the average level of itemized deductions for a person’s income level. Starting in 1984 the PSID asks whether or not a person itemized, and non-itemizers are assigned the standard deduction. Prior to 1984 the authors assign either the standard or itemized deduction, whichever is larger.
 It tends to shift a worker into a higher tax bracket at time t, then it affects A_{t-1} as shown in (66). Thus valid instruments for estimation of (65) must be uncorrelated with both ϵ_{it} and ϵ_{it-1}. Ziliak and Kniesner (1999) argue one must lag the wage and asset variables by two periods (i.e., $w_{it-2}(1-\tau_{it-2})$, A_{it-2} and A_{it-3}) to obtain instruments uncorrelated with ϵ_{it-1}. They also use a quadratic in age, age/education interactions, and home ownership as additional instruments.

The main estimation results imply a Marshallian elasticity evaluated at the mean of the data of $(w/h)\partial h/\partial w = (10.19/2179)(24.66) = 0.1153$, and a very small income effect of $w_t\partial h_t/\partial A_{t-1} = (10.19)(-.00162) = -0.0165$. Thus, the Hicks elasticity is 0.1318. In a second stage, which I describe in detail below, they estimate the Frisch elasticity as 0.163.

Ziliak and Kniesner (1999) go on to use their model to simulate the impact of various tax reform experiments. The average marginal tax rate in their data was 29%. One experiment simulates an across the board 10% rate cut by the U.S. in 1987. The authors simulate that this would only increase average annual hours for prime age married men by 13 hours (or 0.6%). This small effect on hours is not too surprising given the Marshallian elasticity of 0.12. The authors also simulate the effect of the 1986 tax reform that substantially reduced the progressivity of the tax system. As we’ve seen, it is the Hicks elasticity, which they estimate to be 0.13, that is relevant for determining the welfare effects of changing progressivity. They simulate only a 2% hours increase, but a substantial welfare gain from these changes.

It is interesting to compare this result to those in the papers by Blomquist (1983) and Blomquist and Hansson-Busewitz (1990) that I discussed earlier. These papers found Hicks elasticities of 0.11 and 0.13 respectively, but still found large welfare gains from switching to a flat rate tax. So all three of these papers are similar in finding that a modest value of the Hicks elasticity can imply substantial welfare gains from reducing progressivity.

Ziliak and Kniesner (2005) address the issue of non-separability between leisure and consumption, which until now I have largely ignored. To further explore the implications of non-separability, suppose we modify the utility function in equation (3) to read:

$U_t = G \left[C_t^{1+\eta} - \beta_t h_t^{1+\gamma} \right] \quad \eta \leq 0, \; \gamma \geq 0$

Assume that $G[\cdot]$ is concave function, such as $G[X] = \log (X)$ or $G[X] = (1+\sigma)^{-1}X^{1+\sigma}$ for $\sigma \leq 0$. Notice that now the marginal utility of consumption is given by:

70 The authors show that if they use a ratio wage measure (annual earnings over annual hours) and apply exactly the same estimation procedure, they obtain a Marshallian elasticity of -0.083 and a Hicks elasticity of -0.072. This highlights the potentially severe bias created by use of ratio wage measures that I discussed earlier.
Thus, unlike in (3), the marginal utility of consumption is not a function of consumption alone. It also depends on \(X_t\), which is a composite of consumption and hours of work. Note that, for a given level of consumption, \(X_t\) is decreasing in \(h_t\). And \(G\) is concave, so \(G'_t(X_t)\) is increasing in \(h_t\). Thus, *ceteris paribus*, the consumer would like to allocate more consumption to periods when hours are high. That is, hours and consumption are compliments.

The consumer still seeks to satisfy an intertemporal optimality condition like (23) but, with the new expression for marginal utility of consumption in (69), we revise (23) to obtain:

\[
(70) \quad G'_t(X_t) [C_t]^{\eta} = E_t \rho (1 + r) \left\{ G'_t(X_{t,t+1}) [C_{t,t+1}]^{\eta} \right\} \quad \eta \leq 0
\]

Note that now, even if \(\rho (1 + r) = 1\), the consumer will not seek to equalize consumption across periods. As indicated above, with \(G\) concave the consumer will seek to make consumption higher when hours are high. But of course, in the life-cycle model, hours are high when wages are high. So the consumer will seek to make consumption high when earnings are high. Thus, if \(G\) is sufficiently concave, the life-cycle model can generate consumption and earnings paths that look very much like liquidity constrained behavior!

Now consider how the MRS condition (22) is altered by the utility function in (68):

\[
(71) \quad \frac{\partial V}{\partial h_t} = \left\{ G'(X_t)C_t^{\eta} \right\} w_t (1 - \tau_t) - \left\{ G'(X_t) \beta_t h_t^\gamma \right\} = 0 \quad \Rightarrow \quad C_t^{\eta} w_t (1 - \tau_t) = \beta_t h_t^\gamma
\]

That is, it doesn’t change at all. The factor \(G'_t(X_t)\) appears in both the marginal utility of consumption and the marginal utility of leisure, and so it cancels out. This point was made by MaCurdy (1983): the \(G\) function does not affect within period decisions about work and consumption, so estimation of the MRS condition tells us nothing about the form of \(G\).

Thus MaCurdy (1983), in his Method #1, proposed to estimate the form of \(G\) in a second stage. The first stage (discussed earlier) uses the MRS condition to obtain estimates of the parameters of the \(X_t\) function (i.e., \(\gamma\) and \(\eta\) in our example (69)). One can then use these estimates, along with a person’s actual hours and consumption data, to construct estimates of the \(X_t\). One then treats these estimates of the \(X_t\) as data. In the second stage, one uses data on \(X_t, C_t\) and \(r_t\) from multiple periods to estimate the unknown parameters of (70). These include the discount rate \(\rho\) and the parameters of \(G\). For instance, if we assume \(G[X] = (1 + \sigma)^{-1} X^{1+\sigma}\) the
only parameter of G is σ. In his study, MacCurdy (1983) estimated $\sigma = -0.14$ but with a standard error of 0.23. Thus, he couldn’t reject the simple linear G case ($\sigma = 0$).

We now seek more insight into the impact of G on the Frisch elasticity. Substituting the first order condition for consumption (69), which states that $\lambda_t = G'(X_t) \cdot C_i^{\eta}$, into the first order condition for hours in (71), we obtain $\lambda_t w_t (1 - \tau_t) = G'(X_t) \beta_t h_t^{\eta}$. Taking logs, we have that:

$$
\ln h_t = \frac{1}{\gamma} \left\{ \ln w_t + \ln(1 - \tau_t) + \ln \lambda_t - \ln G'(X_t) - \ln \beta_t \right\}
$$

(72)

So the Frisch elasticity – the effect of a wage change holding marginal utility of consumption λ_t fixed – is no longer simply $(1/\gamma)$, because in general a change in w_t will affect $G'(X_t)$.

To explore further how a concave G affects willingness to substitute labor across periods, let’s assume $G[X] = (1+\sigma)^{-1}X^{1+\sigma}$ so that (72) becomes:

$$
\ln h_t = \frac{1}{\gamma} \left\{ \ln w_t + \ln(1 - \tau_t) + \ln \lambda_t - \sigma \ln X_t - \ln \beta_t \right\}
$$

(72')

Clearly, the elasticity of hours with respect to the wage rate holding λ_t fixed – the Frisch elasticity – is not simply $(1/\gamma)$ in this case, because we have to consider the $\ln X_t$ term, and X_t contains C_t and h_t. The exception of course is if $\sigma = 0$ so the $\ln X_t$ term drops out.

To determine what (72') implies about the Frisch elasticity, we can use the within period MRS condition in (71) to substitute out for consumption in X_t, obtaining an expression for X_t solely in terms of hours. Then (72') becomes an implicit equation that relates hours and the wage, holding λ_t fixed. Implicitly differentiating this equation one obtains:

$$
\frac{\partial}{\partial \ln w_t} \ln h_t \bigg|_{\lambda_t \text{ fixed}} = \frac{1}{\gamma} \left\{ \frac{X_t + (\sigma/\eta)C_t^{1+\eta}}{X_t + (\sigma/\eta)C_t^{1+\eta} - \sigma(\beta/\gamma)h_t^{1+\gamma}} \right\}
$$

(73)

If $\sigma = 0$ then (73) reduces to just $(1/\gamma)$ as we would expect. However, as $\sigma \to -\infty$ the fraction in brackets becomes less than one (as the term $-\sigma(\beta/\gamma)h_t^{1+\gamma}$ in the denominator is positive). So complimentarity between work and consumption reduces the Frisch elasticity below $(1/\gamma)$.

Numerical simulations of a simple two-period model based on (68)-(72') reveal a lot about how σ influences behavior, and give a clear intuition for why the Frisch elasticity falls as $\sigma \to -\infty$. I start from a base case where $w_t = h_t = 100$ in both periods, and $\tau = 40\%$. I set $\rho(1+r)=1$ so consumption is 6000 in both periods. In a 2 period model where each period
corresponds to roughly 20 years of a working life, a plausible value for $1+r$ is about $(1+.03)^{20} \approx 1.806$, so $\rho=(1+r)^{-1} \approx 0.554$. The utility function parameters are set to $\gamma = 0.5$ and $\eta = -0.5$.

Then, from (21), The Marshallian elasticity, which indicates how hours respond to a permanent (i.e., two-period) wage change, is 0.5. The Hicks elasticity, which also indicates how hours respond to a permanent (i.e., two-period) wage change, but compensated by a lump sum transfer that keeps utility fixed, is 1.0. It follows from (71) that these elasticities are invariant to σ. The Frisch elasticity (i.e., how hours respond to an anticipated one period wage change) is $(1/\gamma) = 2.0$ if $\sigma = 0$. But this elasticity varies with σ.

In Table 4, I simulate a 1% after-tax wage increase at $t=1$ (from 60 to 60.6) induced by cutting the tax rate from .40 to .394. Results are shown for σ ranging from 0 to -40. Note that when $\sigma = 0$ the worker increases hours in period 1 by 1.03% and reduces hours in period 2 by 0.96%. So labor supply increases by 2% at $t=1$ relative to $t=2$, as expected given the Frisch elasticity of 2. Note also that the consumer continues to smooth his/her consumption over time: consumption increases by 0.97% in both periods. The consequence is that utility actually falls slightly in period 1 while rising by 1.44% in period 2.

As σ decreases the consumer is less willing to sacrifice utility at $t=1$ to achieve higher utility at $t=2$. Given $\sigma = -40$ the consumer is very unwilling to substitute utility across periods. Note how he/she allocates consumption/hours so utility increases by 0.48% at $t=1$ and 0.49% at $t=2$. To achieve this balance, the worker shifts consumption into period 1 to compensate for having to work more hours at $t=1$ (i.e., consumption increases by 1.32% at $t=1$ vs. only 0.33% at $t=2$). The worker also shifts less labor supply toward $t=1$ than in the $\sigma=0$ case. Now hours only increase 0.68% at $t=1$ and only fall 0.33% at $t=2$. This implies a Frisch elasticity of 1.01. As $\sigma \to -\infty$ we get a Leontieff utility function where the consumer only cares about maximizing the minimum utility in any period, and the Frisch elasticity approaches 1.0. This is exactly the Hicks elasticity for a permanent (2-period) wage change.

71 Earnings increase by about 2% in period 1 and drop by about 1% in period 2. This causes the present value of lifetime earnings (and hence of consumption) to increase by $[1.02 + (0.554)(0.99)]/1.554 \approx 1.007$ or 0.97%.

72 Notice that if we take the limit of (73) as $\sigma \to -\infty$ we get that:

$$e_F \to \frac{1}{\gamma} \left(\frac{C_i^{1+\eta}}{\frac{\frac{\sigma}{\eta}C_i^{1+\eta}}{\eta} - \frac{\beta}{\gamma}h_t^{1+\gamma}}\right) = \frac{1}{\gamma} \left(\frac{C_i^{1+\eta}}{\frac{\frac{\frac{\sigma}{\eta}C_i^{1+\eta}}{\eta} - \frac{\beta}{\gamma}h_t^{1+\gamma}}\right)$$

For the particular parameter values in this simulation, the term in curly brackets is equal to 1/2. Note that if $\eta=0$, so there are no income effects, then the second term in the denominator vanishes, and the term in curly brackets is exactly equal to 1. So, with utility linear in consumption, the value of σ has no impact on the Frisch elasticity. This is because the consumer is willing to equalize utility across periods via consumption shifting alone, leaving him/her free to substitute hours of work towards high wage periods as much as if $\sigma=0$. Ironically, a high degree of substitutability in consumption ($\eta=0$) combined with curvature in G makes the consumer behave in a way that looks similar to liquidity constrained behavior (i.e., consumption closely tracks income). Finally, when $\eta=0$ the Frisch $(1/\gamma)$ and Hicks $1/(\gamma-\eta)$ elasticities are always exactly equal (regardless of the value of σ).
To summarize: In the linear case ($G(X_t) = X_t$), and with X_t additive between consumption and hours, there is a separation of the labor supply and consumption problems. The worker shifts labor supply towards high wage periods while using savings to smooth consumption across periods. This means sacrificing utility in the high wage periods.

But if G is concave, the worker.consumer tries to equalize utility across periods by shifting consumption into high-wage/high-hours periods. Thus, the consumer's willingness to substitute consumption inter-temporally puts a damper on his/her willingness to substitute labor. This tends to reduce inter-temporal substitution in labor supply. As a result the Frisch elasticity is less than $(1/\gamma)$ and in the limit (as $\sigma \rightarrow -\infty$) it equals the Hicks elasticity.

It is worth recalling the within period MRS condition (41) still holds regardless of the form of G. So one might estimate equations like (47) to uncover $(1/\gamma)$, and fail to realize it is not the Frisch elasticity. One can still use (47) to obtain the Hicks and Marshallian however.

Returning to the empirical literature, Ziliak and Kniesner (2005) adopt MaCurdy’s Method #1, and allow for non-separability between leisure and consumption, both via the G function and by including an interaction between leisure and consumption in the within period utility function X_t. Specifically, they adopt a translog within-period utility function:

$$U_t = G \left[\alpha_1 \ln(L - h_t) + \alpha_2 \ln C_t - \alpha_3 \ln(L - h_t) \ln C_t - \alpha_4 [\ln(L - h_t)]^2 - [\ln C_t]^2 \right]$$

with $G[X] = (1+\sigma)^{-1} X^{1+\sigma}$. If $\alpha_3 > 0$ hours and consumption are compliments in X_t. This appears to be the only paper allowing for within period nonseparability and taxes in a dynamic model.

As in most U.S.-based work that uses the within period MRS condition, Ziliak and Kniesner (2005) use the PSID, which only contains food consumption. However, they try to improve on this using a method proposed by Blundell et al (2001) to impute nondurable consumption. Using the Consumer Expenditure Survey, which has much more complete consumption information, they develop an equation to predict nondurable consumption based on food consumption, food prices and demographics. They also try a method proposed by Skinner (1987) to predict total consumption using food consumption, house value and rent.

Ziliak and Kniesner use the 1980-1999 waves of the PSID, which have data on the years 1979-1998. One advantage over prior work is the long sample period, which encompasses 5 significant tax law changes. This provides more variation in the budget constraint to help identify utility function parameters. The sample includes 3402 male

73 Recall that the Denver data used by MaCurdy (1983) had a very comprehensive consumption measure.
household heads who were at least 25 in 1980, no older than 60 in 1999 and who are observed for at least 5 years. They use the hourly wage rate question for workers paid by the hour, and, in an effort to reduce denominator bias, for salaried workers they use the same procedure of hours bracketing as in their 1999 paper discussed earlier.

A key challenge in incorporating taxes is to estimate taxable income. The authors assume all married men filed joint returns while unmarried men filed as heads of households (the latter is the more likely source of error). The income of working wives is included when calculating adjusted gross income (AGI). Deductions are estimates using IRS estimates of the average levels of itemized deductions by AGI. From 1984 onward the PSID reports whether a person itemized or took the standard deduction. Following MaCurdy, Green and Paarsch (1990), the authors use a smooth approximation to the piecewise linear tax schedule.

The parameters α_1 and α_2 in (74) are allowed to depend on children, race, and age of youngest child, to capture how these variables may shift tastes for work and consumption. Besides these, the instruments used to estimate the MRS equation, which should be correlated with after-tax wages and consumption but uncorrelated with unobserved tastes for work, are age, education, health, home ownership, and industry, occupation and region dummies.

The authors estimate that $\alpha_3 > 0$, which implies that hours and consumption are compliments in the within period utility function. That is, if work hours are higher then, ceteris paribus, the marginal utility of consumption is higher. Ziliak and Kniesner (2005) let σ vary with age, and estimate $\sigma = 0.844 - 0.039 \cdot \text{Age}$. This means that σ is roughly zero at age 20 and falls to -1.496 at age 60.\footnote{It is difficult to conceptualize what it means for σ to vary with age, given that σ governs a person’s willingness to substitute utility over time. Does a 20 year old with $\sigma = 0$ solve his/her lifetime planning problem as if he/she is very willing to substitute utility inter-temporally, and then engage in re-planning each year as his/her σ drops? Or does a person plan his/her life knowing that σ will fall over time? If so, exactly how does one do that? Does a person take preferences of his/her future selves into account? Apparently, one can circumvent such questions in estimating inter-temporal conditions like (70). But they would have to be confronted to obtain a full solution of a person’s lifetime optimization problem. I discuss models that involve full solutions in Sections V.C and VI.A.} However, the age effect is imprecisely estimated.

Given the translog within period utility function in (74) there is no closed form for the Marshallian and Hicks elasticities. At the mean of the data the authors calculate a Marshallian elasticity of -0.468 (standard error 0.098) and a Hicks elasticity of 0.328 (standard error 0.064). This implies a very large income effect (-0.796) which is comparable to values obtained by Hausman (1981) and Wales and Woodland (1979). In the second stage, incorporating information from the intertemporal condition (70), they obtain a Frisch elasticity of 0.535. If they restrict $\alpha_3 = 0$ they obtain Marshallian, Hicks and Frisch elasticities of -0.157, 0.652 and 1.004 respectively. Thus, ignoring the complimentarity between work hours and consumption
appears to cause upward bias in all three labor supply elasticities. 76

Interestingly, Ziliak and Kniesner (2005) examine how their results are affected by the use of different consumption measures. The comparison is as follows:

<table>
<thead>
<tr>
<th>Consumption Measure</th>
<th>Marshall</th>
<th>Hicks</th>
<th>Income Effect</th>
<th>Frisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blundell et al (2001)</td>
<td>-.468</td>
<td>.328</td>
<td>-.796</td>
<td>.535</td>
</tr>
<tr>
<td>Skinner (1987)</td>
<td>-.313</td>
<td>.220</td>
<td>-.533</td>
<td>.246</td>
</tr>
<tr>
<td>PSID unadjusted</td>
<td>-.442</td>
<td>.094</td>
<td>-.536</td>
<td>.148</td>
</tr>
</tbody>
</table>

Clearly, Hicks and Frisch elasticity estimates are very sensitive to the consumption measure used (while the Marshallian is relatively insensitive). In Section V.A we noted how Eklöf and Sacklén (2000) found that elasticity estimates in static models are quite sensitive to the wage and non-labor income measures. Here we see evidence the same is true of the consumption measure used in life-cycle models (for estimation methods based on the MRS condition).

Finally, the authors use the estimated Hicks elasticity ($e_H = .328$) to calculate the marginal welfare cost of tax increases that raise all tax rates proportionately. This turns out to be 16% greater than the revenue raised. However, if they do the same calculation using the Hicks elasticity obtained using the PSID unadjusted food consumption measure ($e_H = .094$), the welfare loss is only 5% of the revenue raised.

A novel twist in the literature is the paper by Pistaferri (2003). He estimates hours change regressions (i.e., equation (54)), as in the MaCurdy (1981) and Altonji (1986) papers discussed earlier. But Pistaferri adopts a very different approach. Recall that the earlier papers treated the expected change in wages from time $t-1$ to t as unobserved, and hence they used instruments dated at time $t-1$ to construct predicted wage growth in the first stage of a 2SLS procedure. This approach relies on the assumption that the econometrician knows quite a bit about how workers make forecasts. Specifically, he/she must be able to pick instruments that (i) are uncorrelated with the workers’ forecast errors, and (ii) are good predictors of the wage growth workers actually expect. But as we saw, these papers suffered from the problem that coming up with good predictors for actual wage growth is difficult (i.e., first stage R^2s are low). Perhaps workers can predict their wage growth better than we can. Furthermore, as we don’t actually know how workers forecast wages, we can’t be sure that all variables dated at time $t-1$ are in fact used to make forecasts, so we can’t be sure they are valid instruments.

76 I believe the intuition for this result is as follows: If work and consumption are compliments within a period, then a wage increase affects hours through three channels. There are the usual substitution and income effects. But in addition, a wage increase will, ceteris paribus, increase consumption. This reduces the marginal utility of leisure at the initial hours level, giving an additional reason for hours to increase. As a result, a smaller substitution effect is required to explain any given level of responsiveness of hours to wages.
Pistaferri (2003)’s innovation is to use actual data on expectations to construct measures of workers’ anticipated and unanticipated wage growth.

The data that Pistaferri uses is the Bank of Italy Survey of Households’ Income and Wealth (SHIW) from 1989, 1991 and 1993. The survey is conducted every 2 years, and a fraction of subjects are re-interviewed (creating a panel component). The survey contains questions about expected earnings growth, not wage growth. I’ll discuss the problems this creates below, but first consider how we could use wage expectations data if we had it.

Recall the hours growth equation (54) contained actual wage growth as a regressor. Surprise wage growth was relegated to a part of the residual denoted ξ_{it}, representing how the surprise altered the marginal utility of consumption λ_{it}. The presence of ξ_{it} in the residual meant the instruments used to predict wage growth had to be correlated with expected wage growth and uncorrelated with un-expected wage growth. Specifically, recall that:

$$\begin{align*}
\xi_{it} = 1 - \frac{1}{\gamma} \xi_{it} = 1 - \frac{1}{\gamma} \ln \lambda_{it} - E_{t-1} \ln \lambda_{i,t-1} - \frac{1}{\gamma} \ln \rho(1+r_t) + \left[\frac{1}{\gamma} \frac{d \ln \lambda_{it}}{d \psi_{it}} \right] \{ \Delta \ln w_{it} - E_{t-1} \Delta \ln w_{it} \} + \frac{\Delta e_{it}}{\gamma}
\end{align*}$$

where I have defined $\psi_{it} = \{ \Delta \ln w_{it} - E_{t-1} \Delta \ln w_{it} \}$, the unexpected wage change from $t-1$ to t. The first two equalities in (75) are only definitions. But the third states an assumption that all surprise changes in the marginal utility of consumption are due to surprise wage changes. The term $d \ln \lambda_{it} / d \psi_{it}$ captures how wage surprises affect the marginal utility of consumption. An assumption that only wage surprises move λ_{it} is fairly strong. It rules out, e.g., unexpected transfers of assets. But it is important for Pistaferri’s approach, as I describe below.

Now, if expected wage growth could actually be measured, we could rewrite (54) as:

$$\begin{align*}
\Delta \ln h_{it} = \frac{1}{\gamma} \{ \Delta \ln w_{it} - \alpha \Delta X_{it} - \frac{1}{\gamma} \ln \rho(1+r_t) + \left[\frac{1}{\gamma} \frac{d \ln \lambda_{it}}{d \psi_{it}} \right] \{ \Delta \ln w_{it} - E_{t-1} \Delta \ln w_{it} \} + \frac{\Delta e_{it}}{\gamma} \}
\end{align*}$$

Furthermore, if we decompose the first term on the right hand side of (76) – actual wage growth – into parts that were anticipated vs. unanticipated at time $t-1$, we obtain:

$$\begin{align*}
\Delta \ln h_{it} = \frac{1}{\gamma} \{ E_{t-1} \Delta \ln w_{it} - \alpha \Delta X_{it} - \frac{1}{\gamma} \ln \rho(1+r_t) + \left[\frac{1}{\gamma} \frac{d \ln \lambda_{it}}{d \psi_{it}} \right] \psi_{it} + \frac{\Delta e_{it}}{\gamma} \}
\end{align*}$$

Equation (77) captures how anticipated wage changes $E_{t-1} \Delta \ln w_{it}$ have only a Frisch substitution effect $(1/\gamma)>0$ on hours. But unanticipated wage changes $\psi_{it} = \{ \Delta \ln w_{it} - E_{t-1} \Delta \ln w_{it} \}$ have both a substitution effect $(1/\gamma)$ and an income effect $(1/\gamma)(d \ln \lambda_{it} / d \psi_{it}) < 0$. Thus, the sign of the effect of unanticipated wage changes is theoretically ambiguous.
A number of authors, including Blundell and MaCurdy (1999), have argued that tax reforms are generally unexpected and, to a good approximation, assumed to be permanent by workers.\footnote{Note that the two assumptions are really two sides of the same coin: If one always thinks the current tax regime is permanent, then one will always be surprised by changes.} If we grant this, then, as Blundell and MaCurdy (1999) state, the coefficient on unanticipated wage changes, \((1/\gamma) + (1/\gamma)(d\ln\lambda_it/d\psi_it) \), is what we should be concerned with for evaluating labor supply effects of tax reforms.\footnote{See Blundell and MaCurdy (1999) page 1603: “As most tax and benefit reforms are probably best described as once-and-for-all unanticipated shifts in net-of-tax real wages today and in the future, the most appropriate elasticity for describing responses to this kind of shift is \(\alpha_i + \gamma_0 \),” where \(\alpha_i \) and \(\gamma_0 \) correspond, in their notation, to the two coefficients \(1/\gamma \) on un-expected wage changes in equation (77).} But many subtle issues are involved here:

The coefficient \((d\ln\lambda_it/d\psi_it) \) depends on many things, including: (i) how do consumers forecast future wages (i.e., to what extent do they expect surprise changes to be permanent or transitory?), (ii) how do consumers forecast future taxes (i.e., to what extent do they expect tax rule changes to be permanent or transitory?), (iii) do the answers to questions (i) and (ii) depend on the source of the wage or tax change? (E.g., If a wage change occurs due to an unexpected change in tax law is it expected to be more or less persistent than if it occurs due to an unexpected promotion or layoff?). Many more questions of this type could be asked.

The first fundamental issue that one must deal with is how workers map unanticipated wage changes into expectations of future wages. To do this one must specify a model of the wage process, and make an assumption about how consumers forecast future wages. Pistaferri (2003) assumes that log wages follow a random walk process with drift:

\[
(\text{78}) \quad \ln w_{it} = \ln w_{i,t-1} + X_{i,t-1} \theta + \psi_{it} + E_{t-1} \psi_{it} = 0
\]

where \(\psi_{it} \) is unexpected wage growth. Pistaferri (2003) further assumes that workers know (78) is the wage process, and use (78) to forecast future wages. Ironically, having data on wage expectations does not obviate the need to make assumptions about how expectations are formed!\footnote{This point has been made in a different context (forecasting future prices of durable goods) by Erdem, Keane, Oncu and Strebel (2005). They show that when enough periods are available one can use the expectations data to estimate the expectations formation process, but one still has to impose some a priori structure on the process. Pistaferri cannot pursue this approach because he only has two periods of expectations data.} The key behavioral assumption implied by (78) is that workers view all wage innovations as permanent: an unexpected wage change \(\psi_{it} \) shifts a worker’s expectation of all his/her future wages by exactly \(\psi_{it} \).

Next, similar to MaCurdy (1981), Pistaferri (2003) must make an assumption about how current and expected future wages, as well as current assets, map into the marginal
utility of consumption. Specifically, he assumes that:

\[\ln \lambda_{it} = \Gamma_{at} A_{it} + \Gamma_{0i} \ln w_{it} + \sum_{t=t+1}^T \Gamma_{t-t} E_{i} \ln w_{i,t} \]

There is a key difference between MaCurdy (1981) and Pistaferri (2003) however, in that MaCurdy approximates the marginal utility of wealth in a model with perfect foresight. This is a function of the whole life-cycle wage path and initial assets, and it only varies over time according to the deterministic relationship \(\lambda_{it} = \rho(1+r_\tau)\lambda_{i,t+1} \) (equation (18)). Thus MaCurdy is trying to estimate a single \(\ln \lambda_{i0} \), while Pistaferri is trying to estimate the time varying \(\ln \lambda_{it} \).

A key thing an approximation to \(\ln \lambda_{i0} \) ought to capture is that, as the time horizon grows shorter, a temporary wage increase should have a larger effect on the marginal utility of consumption (i.e., In the terminal period, a wage increase is used entirely to increase current consumption, while in an earlier period it would be spread over all future periods). This is why the \(\{\Gamma_{kt}\} \) terms in (79) are allowed to vary over time. Each term has both a subscript \(k=0,\ldots,T-t \) that indicates the effect of the expected wage at time \(k \) on perceived wealth at time \(t \), and a time subscript \(t \) that allows these effects to change over time. Of course, if one allowed the \(\{\Gamma_{kt}\} \) terms to vary in an unconstrained way over \(k \) and \(t \) there would be a severe proliferation of parameters. So Pistaferri constrains them to vary linearly.

From (78)-(79) we get that the surprise change in the marginal utility of consumption is related to the surprise change in the wage as follows:

\[\ln \lambda_{it} - E_{i-1} \ln \lambda_{it} = \Gamma_{a}[A_{it} - E_{i-1} A_{it}] + \Gamma_{0} \{\ln w_{it} - E_{i-1} \ln w_{it}\} + \sum_{t=t+1}^T \Gamma_{t-t} \{E_{i} \ln w_{i,t} - E_{i-1} \ln w_{i,t}\} \]

\[= \Gamma_{a}[A_{it} - E_{i-1} A_{it}] + \Gamma_{0} \{\psi_{it}\} + \sum_{t=t+1}^T \Gamma_{t-t} \{\psi_{it}\} = \Gamma_{a} \cdot 0 + \Gamma \cdot \psi_{it} \]

where I have suppressed the time subscripts on the \(\Gamma \) to conserve on notation.

80 MaCurdy (1981) backs out \(\ln \lambda_{i0} \) in a second stage after estimating the differenced hours equation (54) in the first stage. This is possible because estimation of (54) uncovers all parameters of the hours equation in levels, \(\ln \lambda_{i0} = (1/\gamma) \ln \lambda_{i0} - (1/\gamma) \ln \rho(1+r) + (1/\gamma)X_{it} + (1/\gamma)c_{it} \) except for \((1/\gamma)\ln \lambda_{i0} \), which is the individual specific constant (or “fixed effect”) in the levels equation. Given these constants, MaCurdy can, in principle, regress them on the whole set of life-cycle wages. However, he only observes wages for his 10 year sample period. So he fits a life-cycle wage profile for each person using 10 years of data. He then regresses the \((1/\gamma)\ln \lambda_{i0} \) on the individual specific parameters of this (assumed quadratic) profile. Using the coefficient on the wage equation intercept, MaCurdy can determine how an upward shift in the whole wage profile would affect \((1/\gamma)\ln \lambda_{i0} \) and hence labor supply. He estimates a 10% increase in wages at all ages would increase labor supply by only 0.8%. Of course, the problem with this procedure relative to MaCurdy (1983) Method #1 is the need to extrapolate out of sample wage information rather than using current consumption to proxy for lifetime wealth.

81 The same argument holds for an increase in assets. For instance, a 60 year old who wins a million dollars in the lottery should be much more likely to retire than a 30 year old.

82 This is not indicated in the notation in his paper (see Pistaferri equation (8)), but Pistaferri has confirmed this to me in private correspondence.
In (80) all the Γ are negative, because a surprise increase in assets, a surprise increase in the current wage, or in any future wage, all increase the consumer’s perceived wealth. This leads to higher current consumption and hence a lower marginal utility of consumption. The second line of the equation utilizes the fact that, given the random walk wage process in (78), the changes in all future wage expectations $E_t \ln w_{i, \tau} - E_{t-1} \ln w_{i, \tau}$ for $\tau = t+1, ..., T$ are equal to the current wage surprise ψ_{it}. Again, this is because that surprise is expected to persist forever. At the opposite extreme, if we had instead assumed that consumers perceive all wage surprises as purely transitory, then we would have $E_t \ln w_{i, \tau} - E_{t-1} \ln w_{i, \tau} = 0$ for all $\tau = t+1, ..., T$ and the third term in the second line would vanish. Finally, the last term of (80) invokes Pistaferri’s assumption of no unexpected asset changes, and defines $\Gamma = \Gamma_0 + \Gamma_1 + \cdots + \Gamma_{T-t}$.

Now, given (80), we have that $d \ln \lambda_{it} / d \psi_{it} = \Gamma \psi_{it}$ and hence we can rewrite (77) as:

$$(81) \quad \Delta \ln h_{it} = \frac{1}{\gamma} (E_{t-1} \Delta \ln w_{it}) - \frac{\rho}{\gamma} \Delta X_{it} - \frac{1}{\gamma} \ln (1 + r_t) + \left[\frac{1}{\gamma} + \frac{\Gamma}{\gamma} \right] \{ \Delta \ln w_{it} - E_{t-1} \Delta \ln w_{it} \} + \frac{\Delta \epsilon_{it}}{\gamma}$$

This gives us Pistaferri’s essential idea. We can use the coefficient on expected wage changes to estimate the intertemporal elasticity of substitution ($1/\gamma$), while using the coefficient on unexpected wage changes to estimate the “total” effect of a wage change, which includes both the substitution effect and the income effect. Taking the difference between the two coefficients enables us to isolate the income effect of a permanent wage increase (Γ / γ).

Estimation of (81) has some key advantages over the conventional approach pursued in MaCurdy (1981) and Altonji (1986). First, instruments need not be uncorrelated with wage surprises, as unexpected wage changes are controlled for (rather than being relegated to the error). This also circumvents the problem, noted earlier, that it is hard to find good predictors of wage growth. Second, as Pistaferri notes, the best predictors are usually age and education, but it is a strong assumption that these are excluded instruments not appearing in the hours equation itself (i.e., that they do not shift tastes for work). Third, the problem of aggregate productivity shocks is avoided, as the average forecast error no longer enters the error term.

Unfortunately, there are important gaps between this excellent idea and its actual empirical implementation. The first problem Pistaferri faces is that the Bank of Italy Survey does not really contain expectations of wage changes, but only of earnings changes. Pistaferri shows how to construct a version of (81) where expected and unexpected earnings replace

83 Notice that the wealth effect term Γ gets (mechanically) smaller as t gets larger, simply because there is less of a future horizon over which wages will increase, so fewer Γ_t terms are being added up. Counteracting that, as I argued earlier, is that the wealth effect of each individual (period specific) wage increase should grow larger as one gets closer to the end of the planning horizon.
wages, and coefficients are suitably modified. However, as Pistaferri notes, this introduces a major problem: Unobserved shifts in tastes for work will of course alter earnings (as earnings are a function of hours). And, as unobserved tastes for work \((\Delta e_t)\) enter the error term in the hours equation, expected and unexpected earnings changes are endogenous.

Second, expected earnings changes are presumably measured with error. As variables like hours and earnings are measured with error, it would be highly implausible to assume a more subtle concept like the expected change in earnings is not measured with error as well. Furthermore, there may be systematic errors arising from how respondents interpret the survey question, which reads “We are interested in knowing your opinion about your labor earnings or pensions 12 months from now.” Is it clear whether respondents would include expected tax changes when answering such a question? And, while the expectations question asked about earnings 12 months hence, the data on wages, hours and earnings were collected in 1989, 1991 and 1993. In order to align the two-year time interval of the earnings data with the one year forecast horizon, Pistaferri assumes a person would have projected their earnings growth rate forecast to persist for two years, an additional source of measurement error.

Both of these problems suggest that it may be necessary to instrument for expected and unexpected changes in earnings, using variables that help predict these variables but that are uncorrelated with taste shocks and measurement error. In that case, a key advantage of Pistaferri’s procedure (i.e., not needing to instrument) is lost. Pistaferri (2003) does not in fact attempt to deal with these problems, and he estimates his version of (81) by least squares.

For estimation Pistaferri uses data on male household heads aged 26 to 59 in 1989. There are 1,461 person-year observations in the unbalanced panel. As observed taste shifters he uses age, education, region, family size, whether the wife or other household members work, and number of children in various age ranges. He estimates that the Frisch elasticity is .704 with a standard error of .093 and the income effect \((\Gamma/\gamma)\) is -.199 (standard error .091). Thus, the elasticity of labor supply with respect to a surprise permanent upward shift in the wage profile is .51. That is, a permanent unexpected 10% wage increase would cause a 5% increase in labor supply. This is a very large uncompensated wage effect, and it implies that permanent tax changes have very large effects on labor supply. The result contrasts sharply with MaCurdy (1981)’s comparable estimate of only an 0.8% increase. We should view both results with some caution however, given the data limitations noted above.84

84 Pistaferri (2003) contains a couple of other elements that I haven’t mentioned. His version of (81) includes a measure of the perceived variance of earnings, also obtained from the survey of expectations. But he finds that variance is not significant in the hours equation. He also tests for separability between leisure and consumption
Another key point is that Italy had a recession in 1993. Pistaferri (2003) includes a 1993 dummy in (81) and obtains a coefficient of -.068 (standard error of .023), which implies a 6.8% decline in hours not explained by the model. This may suggest that workers in Italy are not free to adjust hours in the short run, and that there was demand induced rationing.

Bover (1989) also adopts a novel approach to estimating responses to both anticipated wage changes and unanticipated permanent wage changes within the life-cycle framework. Her innovation was to use a Stone-Geary utility function in place of the function (3) used by MaCurdy (1981) and Altonji (1986). The virtue of the Stone-Geary is it can deliver a closed form solution for the marginal utility of consumption λ. The Stone-Geary functional form is:

\[
U_t = \beta_{it} \ln(H_{\text{max}} - h_{it}) + (1 - \beta_{it}) \ln(C_{it} - C_{\text{min}})
\]

H_{max} and C_{min}, which denote maximum feasible hours of work and minimum consumption, are parameters to be estimated. β_{it} is a parameter that captures tastes for leisure relative to consumption. The marginal utilities of consumption and leisure are given by:

\[
\begin{align*}
\lambda_{it} &= \frac{\partial U_t}{\partial C_t} = (1 - \beta_{it}) \frac{1}{C_{it} - C_{\text{min}}} \\
- \frac{\partial U_t}{\partial h_{it}} &= \beta_{it} \frac{1}{H_{\text{max}} - h_{it}}
\end{align*}
\]

Thus, the usual within period MRS conditional gives us:

\[
\frac{\partial U_t}{\partial L_t} = w_{it} \frac{\partial U_t}{\partial C_t} \quad \Rightarrow \quad \beta_{it} \frac{1}{H_{\text{max}} - h_{it}} = w_{it} \lambda_{it}
\]

From (84) we solve for labor supply as a function of the marginal utility of consumption λ_{it}:

\[
h_{it} = H_{\text{max}} - \frac{\beta_{it}}{w_{it} \lambda_{it}} \quad \Rightarrow \quad \beta_{it} = (H_{\text{max}} - h_{it}) w_{it} \lambda_{it}
\]

where the equation to the right of the arrow is simply a rearrangement of the labor supply equation that is useful below.\(^85\) Using (85) we can obtain the Frisch elasticity as follows:

\[
\frac{\partial h_{it}}{\partial w_{it}} \bigg|_{\lambda_{it} \text{ fixed}} = \frac{\beta_{it}}{(w_{it})^2 \lambda_{it}} \quad \Rightarrow \quad e_F = \frac{w_{it}}{h_{it}} \frac{\partial h_{it}}{\partial w_{it}} \bigg|_{\lambda_{it} \text{ fixed}} = \frac{\beta_{it}}{w_{it} h_{it} \lambda_{it}}
\]

but does not find strong evidence for nonseparability. Finally, Pistaferri also uses his data to estimate an hours change regression like that estimated in MaCurdy (1981) and Altonji (1986), using a cubic in age and education and interactions between age and education as instruments. This produces a Frisch elasticity of .318 with a standard error of .319. The R^2 in the first stage regression is only .0025 with an F-statistic of 1.73. One of the key advances in econometric practice since the 1980s is the much greater attention that is now paid to the problem of weak instruments in the first stage of 2SLS regressions. A common rule of thumb is that the F-statistic should be at least 5 before results are to be trusted.

\(^85\) It is worth noting that, in contrast to (22), the labor supply equation in (85) does not take a form where it is possible to eliminate the unobserved λ_{it} term via some simple transform like taking logs and differencing.
Equation (86) is not particularly useful as it still involves λ_{it}, but we can use the right side of (85) to substitute out for β_{it} and obtain:

\[
(87) \quad e_F = \frac{(H_{\text{max}} - h_{it})w_{it}\lambda_{it}}{w_{it}h_{it}\lambda_{it}} = \frac{(H_{\text{max}} - h_{it})}{h_{it}}
\]

Equation (87) illustrates the restrictiveness of the Stone-Geary for the present purpose. The single parameter H_{max} will determine the Frisch elasticity (at any given level of hours) but, as we see from (85), this parameter also plays a key role in determining the average level of hours. The restrictiveness created problems in fitting the data, as we will see below.86

Now, returning to the issue of solving for λ, we first use (83) to solve for consumption as a function of the marginal utility of consumption λ_{it}:

\[
(88) \quad C_{it} = C_{\text{min}} + (1 - \beta_{it}) \frac{1}{\lambda_{it}}
\]

Now, following Bover (1989), we assume perfect foresight and let $\rho(1+r)=1$. In this case λ_{it} is just a person specific constant λ_{i}, and we can re-write the demand functions (85) and (88) as:

\[
(89) \quad h_{it} = H_{\text{max}} - \beta_{it} \frac{1}{w_{it}} \frac{1}{\lambda_{i}} \quad C_{it} = C_{\text{min}} + (1 - \beta_{it}) \frac{1}{\lambda_{i}}
\]

Note that with perfect foresight the lifetime budget constraint is:

\[
\sum_{t=1}^{T} \frac{1}{(1+r)^{t-1}} C_{it} = A_{0t} + \sum_{t=1}^{T} \frac{1}{(1+r)^{t-1}} w_{it} h_{it}
\]

Substituting (89) into the budget constraint, and approximating finite sums by infinite sums (as in Bover (1989)), we obtain, after some simple algebra:

\[
(90) \quad \frac{1+r}{r} \frac{1}{\lambda_{i}} = A_{0} + \sum_{t=1}^{T} \frac{1}{(1+r)^{t-1}} [w_{it} H_{\text{max}} - C_{\text{min}}] = F_{i}
\]

The right hand side of (90) is the definition of lifetime “full income” in the Stone-Geary setup (i.e., initial assets plus the present value of the maximum amount one could possibly earn in excess of the subsistence consumption level C_{min}). Note that as lifetime wealth (as measured by full income) increases, the marginal utility of consumption λ_{i} falls. We can now use (90) to

86 Also note that $L_{it} = H_{\text{max}} h_{it}$ is interpretable as leisure. Thus, if leisure were observed the Frisch elasticity would simply be the ratio of leisure hours to labor hours, and it would not depend on any model parameters. This again illustrates the lack of flexibility of the Stone-Geary functional form for this purpose.
substitute for \(\lambda_i \) in the labor supply equation in (89), getting:

\[
(91) \quad h_{it} = H_{\text{max}} - \frac{\beta_{it}}{w_{it}} \frac{r}{1+r} F_i
\]

To see how a permanent increase in wages affects labor supply it is useful to specify a wage process. Bover uses a linear time trend \(w_{it} = \alpha_{0i} + \alpha_{it} t \). Substituting this into (90) we obtain:

\[
(92) \quad F_i = A_{i0} + \sum_{t=1}^{T} \left((\alpha_{0i} + \alpha_{it} t) H_{\text{max}} - C_{\text{min}} \right) = A_{i0} + \frac{1+r}{r} \left(\alpha_{0i} H_{\text{max}} - C_{\text{min}} \right) + \sum_{t=1}^{T} \alpha_{it} \cdot t \cdot H_{\text{max}}
\]

Now we can calculate the elasticity of labor supply with respect to an anticipated permanent wage increase (i.e., an upward shift in the whole wage profile induced by increasing the wage equation intercept \(\alpha_{0i} \)). We have:

\[
\frac{\alpha_{0i} \partial h_{it}}{h_{it} \partial \alpha_{0i}} = \frac{\alpha_{0i} \beta_{it}}{w_{it}^2 h_{it}} \frac{r}{1+r} F_i - \frac{\alpha_{0i} \beta_{it}}{w_{it} h_{it}} H_{\text{max}}
\]

The first term on the right is the substitution effect that arises from the increase in the current wage, while the second term is the income effect that arises due to the increase in \(F_i \). \(^{87}\) Bover shows how to extend this analysis to the uncertainty case where wages evolve stochastically, but I will not discuss this in detail as her empirical results for the uncertainty case are nearly identical to those in the perfect foresight model.

Bover (1989) estimates the labor supply model obtained by combining (91) and (92) using PSID data from 1968-76. She uses data on 785 white men aged 20 to 50 in 1968, requiring that they have positive annual hours and wages for all periods. In a first stage she uses the 10 years of wage observations for each person to estimate the person specific parameters in the wage equation \(w_{it} = \alpha_{0i} + \alpha_{it} t \). \(^{88}\) As usual, randomness is introduced into the labor supply model by letting the taste shift variable \(\beta_{it} \) in (91) be stochastic. It is also allowed to vary with age and number of children. The wage is treated as endogenous, both due to measurement error and because workers with a high unobserved taste for work may work harder and thus achieve a higher wage rate. The instruments are the typical age and education variables, along with the State unemployment rate (interpreted as a demand shifter) and time dummies.

\(^{87}\) The second term is equivalent to the expression in Bover (1989) equation (11). That expression gives the wealth effect of shifting up the wage profile, but it does not include the current wage effect.

\(^{88}\) As in MaCurdy (1981), a profile is also fit to assets, and the intercept is used to measure initial assets \(A_{i0} \).
Turning to the estimates, the value of H_{max} is 2353 hours (with a standard error 43). This result seems rather implausible, given that many people do in fact work more than 2353 hours. Indeed, Bover reports that observed hours exceed H_{max} for 65% of observations. As I discussed earlier, the Frisch elasticity in the Stone-Geary model is simply $(H_{\text{max}} - h_t)/h_t$, and since h_t exceeds 2000 for most working men, the low value of H_{max} guarantees that the Frisch elasticity will be quite small. At the mean of the data Bover calculates it is 0.08. Bover also finds very small income effects. Thus, she reports that the response of hours to a shift in the entire life-cycle wage profile is trivially small. But the real point of these results seems to be to cast doubt on the ability of a model with Stone-Geary preferences to fit observed hours data – which is unfortunate given that the Stone-Geary delivers a simple form for λ.

V.C. The Life-Cycle Model with Human Capital and Savings

A fundamental problem with the labor supply models that I discussed in Sections V.A and V.B is that they treat (pre-tax) wages as exogenous. That is, they ignore the possibility that work experience may lead to increased wages. Existence of such experience effects has rather striking implications for all estimation methods discussed in Sections V.A and V.B.

To see this, let’s return to the simple two period model of (15) but assume that the wage in period 2, rather than being exogenously fixed, is an increasing function of hours of work in period 1. For expositional purposes I will assume the simple function:

(93) \[w_2 = w_1 (1 + \alpha h_1) \]

where α is the percentage growth in the wage per unit of work. Once we introduce human capital accumulation via work experience as in (93), equation (15) is replaced by:

(94) \[
V = \frac{[w_1 h_1 (1 - \tau_1) + b]^{1+\eta}}{1 + \eta} - \beta_1 h_1^{1+\gamma} + \rho \left\{ \frac{[w_1 (1 + \alpha h_1) h_2 (1 - \tau_2) - b (1 + r)]^{1+\eta}}{1 + \eta} - \beta_2 h_2^{1+\gamma} \right\}
\]

where I have ignored non-labor income for simplicity. The first order conditions are now:

(95) \[
\frac{\partial V}{\partial h_1} = C_1^\eta w_1 (1 - \tau_1) - \beta_1 h_1^\gamma + \rho C_2^\eta w_1 \alpha h_2 (1 - \tau_2) = 0
\]

(96) \[
\frac{\partial V}{\partial h_2} = C_2^\eta w_1 (1 + \alpha h_1) (1 - \tau_2) - \beta_2 h_2^\gamma = 0
\]

(97) \[
\frac{\partial V}{\partial b} = C_1^\eta - \rho (1 + r) C_2^\eta = 0
\]
Comparing (95) to (16) we see it now includes the extra term $\rho C_2^\eta w_t \alpha h_2 (1 - \tau_2)$, the effect of an extra hour of work at $t=1$ on the present value of earnings at $t=2$. If we perform the usual manipulations on (95) to obtain the within period MRS condition we now obtain:

$$MRS = \frac{M_L^U}{M_C^U} = \frac{\beta h_t^\gamma}{C_1^\eta} = w_t (1 - \tau_1) + \frac{\rho C_2^\eta}{C_1^\eta} \alpha w_t h_2 (1 - \tau_2)$$

This can be simplified by using (97) to eliminate $C_2^\eta / C_1^\eta = [\rho (1+r)]^{-1}$ giving:

$$(98) \quad \frac{\beta h_t^\gamma}{C_1^\eta} = w_t (1 - \tau_1) + \frac{\alpha w_t h_2 (1 - \tau_2)}{1 + r}$$

It is useful to compare (98) to (22), the MRS condition for the model without human capital. Here the opportunity cost of time is no longer simply the after-tax wage rate. Instead, it is augmented by the term $\alpha w_t h_2 (1 - \tau_2) / (1 + r)$, which captures the effect of an extra hour of work at $t=1$ on the present value of earnings at $t=2$.

The fact that the MRS condition for $t=1$ depends not just on variables dated at $t=1$ but also on h_2 means the key idea of MaCurdy Method #1 and of two-stage budgeting techniques – i.e., that current period consumption is a sufficient statistic for all future period variables – no longer holds. Say we ignore this problem and attempt to estimate the parameters of preferences by estimating an MRS condition like (22), ignoring the human capital term. The size of the resultant bias will depend on the size of the human capital term relative to the after-tax wage. I’ll discuss this in more detail after we examine some empirical results.

I now turn to the empirical literature on male life-cycle labor supply that includes human capital accumulation. Unfortunately, there are very few papers of this type. As far as I am aware, the first paper to estimate a life-cycle model with human capital was Heckman (1976). The computing technology available at that time did not permit estimation of a model where workers decide jointly on savings and human capital investment, particularly not while also allowing for uncertainty in wages and stochastic taste shocks. Thus, Heckman’s model is deterministic and only attempts to fit “typical” life cycle paths of wages and hours.

The Heckman (1976) approach is rather different from the “learning by doing” human capital investment model in (93)-(94). Instead, Heckman follows Ben-Porath (1967) and Haley (1973) in using a type of model where a worker may choose to devote some fraction to his/her work time to investment. The worker is paid only for productive time, not time spent learning. But observed labor supply is the sum of all time at work: productive time
plus investment time. Hence, the observed market wage rate in period t is $w_t = w^*_t (1 - S(t))$, where w^*_t is the worker’s actual productivity and $S(t)$ is the fraction of his/her time at work that the worker spends investing in human capital.

The key similarity between Heckman’s model and the learning-by-doing model is that the observed market wage rate (w_t) is not the opportunity cost of time. Instead it is w^*_t, the worker’s productivity, as that is what he/she gives up per unit of time spent in leisure or learning. The cost of time exceeds the wage rate by the multiplier $1/(1 - S(t))$, which is an increasing function of the fraction of time at work that the worker spends investing in human capital. So fundamentally Heckman’s model is quite similar in spirit to that in equations (93)-(94), in that human capital investment causes the opportunity cost of time to exceed the wage.

Heckman (1976) estimates an equation for $S(t)$ jointly with an equation for observed hours and wages (derived from a particular functional form mapping investment time into wages). The model is estimated on data for 23-65 year old males from the 1970 U.S. Census. As the model is deterministic, it is fit to average wages and hours (by age). Heckman’s estimate of the $S(t)$ function implies that 23-year old male workers spend roughly 35% of their work time in human capital investment activity. Hence, their opportunity cost of time exceeds their observed wage rate by roughly 54%. The fraction of time spent on investment is estimated to drop steadily, becoming near 0% at about age 40. Thus, his estimates imply that the opportunity cost of time grows only 65% as much as the observed wage rate from age 23 to age 40 (Note that: $w_{40}^* / w_{23}^* = w_{40} / [w_{23}/(1-.35)] = (.65)(w_{40} / w_{23})$).

Shaw (1989) substantially extended Heckman (1976) by estimating a model where workers make joint decisions about savings and human capital investment, incorporating uncertainty about future wages and hours. Her approach is to estimate an equation similar to equation (98), the MRS condition. However, to take the model to data one must first extend it to multiple periods and introduce uncertainty. A simple way to do this is to re-write (98) as:

$$ (99) \quad \frac{\beta h^*_t}{C^*_t} = w_t (1 - \tau) + E_t \sum_{\tau=0}^{T} \left(\alpha w_{\tau+1} h_{\tau+1+\tau} (1 - \tau_{\tau+1+\tau}) \right) \left(1 + r\right)^{\tau+\tau} $$

where I assume the wage equation (93) has the form $w_{t+1} = (1 + \alpha \sum_{\tau=0}^{T} h_{\tau}) w_t$. Then, a one unit increase in h_t raises the wage by (αw_t) in all future periods. This raises earnings by $(\alpha w_t) h_{t+1+\tau}$ for $\tau = t+1, \ldots, T$. The second term in (99) is the expected present value of increased (after-tax) earnings in all future periods obtained by working an extra unit of time at time t.

73
The problem with (99) is it involves hours of work in all future periods, which is not available in any data set. Shaw (1989) uses the following trick to get around this problem. First, rewrite (99) as:

\[(99') \quad \frac{\beta h^y}{C_t^q} = w_t(1-\tau_t) + \frac{(\alpha w_t)h_{t+1}(1-\tau_{t+1})}{(1+r)} + E_t \sum_{\tau=0}^{T-t-1} \frac{(\alpha w_t)h_{t+2+\tau}(1-\tau_{t+2+\tau})}{(1+r)^{2+\tau}}\]

Now take (99) and date it forward one period:

\[(99'') \quad \frac{\beta h^y_{t+1}}{C_{t+1}^q} = w_{t+1}(1-\tau_{t+1}) + E_{t+1} \sum_{\tau=0}^{T-t-1} \frac{(\alpha w_t)h_{t+2+\tau}(1-\tau_{t+2+\tau})}{(1+r)^{2+\tau}}\]

Now, notice that the summation terms on the right hand sides of (99’) and (99’’) are identical, except for a factor of 1/(1+r) and the dating of the expectation. So, pre-multiplying (99’’) by 1/(1+r) and taking the expectation at time \(t\) we obtain:

\[(100) \quad E_t \left\{ \frac{1}{1+r} \left[\frac{\beta h^y_{t+1}}{C_{t+1}^q} - w_{t+1}(1-\tau_{t+1}) \right] \right\} = E_t \sum_{\tau=0}^{T-t-1} \frac{(\alpha w_t)h_{t+2+\tau}(1-\tau_{t+2+\tau})}{(1+r)^{2+\tau}}\]

The intuition for why these manipulations are useful is that, at time \(t\), the worker knows (or, rather, we assume he/she knows) that at time \(t+1\) he/she will choose hours and consumption to satisfy (99’’). Thus, we can use the worker’s own labor supply and consumption behavior at \(t+1\), described by the simple expression on the left of (100), to infer what he/she believes about the complex expectation term sitting on the right.\(^{89}\)

So, using (100) to substitute for the summation term in (99’), we obtain:

\[(101) \quad \frac{\beta h^y}{C_t^q} = w_t(1-\tau_t) + \frac{(\alpha w_t)h_{t+1}(1-\tau_{t+1})}{(1+r)} + E_t \left\{ \frac{1}{1+r} \left[\frac{\beta h^y_{t+1}}{C_{t+1}^q} - w_{t+1}(1-\tau_{t+1}) \right] \right\}\]

This equation is feasible to estimate, as it only requires data on hours at time \(t\) and \(t+1\), wages at \(t\) and \(t+1\), and consumption at time \(t\) and \(t+1\). The final step is to replace the expectation term with its actual realization, while appending a forecast error:

\[(102) \quad \frac{\beta h^y}{C_t^q} = w_t(1-\tau_t) + \frac{(\alpha w_t)h_{t+1}(1-\tau_{t+1})}{(1+r)} + \frac{1}{1+r} \left[\frac{\beta h^y_{t+1}}{C_{t+1}^q} - w_{t+1}(1-\tau_{t+1}) \right] + \xi_{t+1}\]

Equation (102) is the basic type of equation that Shaw (1989) uses. The estimation is done in

\(^{89}\) Interestingly, this is a continuous data analogue of the procedure developed by Hotz and Miller (1993) to infer agents’ expectations from their discrete choices in discrete choice dynamic programming models.
two stages. In the first stage a wage equation is estimated to determine how wages grow with work experience (i.e., α in equation (93)). In the second stage the wage equation parameters are treated as known and (102) is estimated by instrumental variables.90 Valid instruments are known by workers at time t, so they are uncorrelated with the forecast error ξ_{t+1}.

While (102) is similar to what Shaw (1989) estimates, she does not include taxes. On the other hand, she introduces a number of additional features. First, rather than (3) she uses a translog utility function as in (74), with $G(X) = X$. As a consequence the marginal utility of consumption and leisure terms in (102) become more complicated. Second, she lets the taste for work parameter β vary across workers based on schooling level. Third, in the wage equation she allows the rental rate on human capital to vary over time.

It is interesting that Shaw (1989) does not introduce stochastic variation in tastes as in the previous studies we have examined. The reason why can be seen by looking at the simple MRS condition for the model without human capital, (22), and following the steps that led to the equation (54), where expectation errors and taste shocks entered as a composite additive error. Hence, one can estimate (54) by instrumental variables without having to assume any distribution for the forecast errors and taste shocks. In contrast, in (102), we see that if β is allowed to have a stochastic component it will enter the equation in a highly non-linear way. Thus, the taste shock will not “pop out” into an additive error that can be combined with ξ_t. This makes the simple application of instrumental variables estimation infeasible.91

Turning to the wage equation, Shaw (1989) assumes that a worker’s human capital, denoted by K, evolves according to:

\begin{equation}
K_{i,t+1} = \alpha_1 K_{it} + \alpha_2 K_{it}^2 + \alpha_3 K_{it} h_{it} + \alpha_4 h_{it}^2 + \alpha_5 h_{it}^2 + \tau_t + \varepsilon_{it} \tag{103}
\end{equation}

That is, current human capital is a quadratic function of last year’s human capital and last year’s hours of work. The $\{\tau_t\}$ are year specific aggregate shocks while the $\{\varepsilon_{it}\}$ are person specific idiosyncratic shocks to human capital production (i.e., illness, job separations). The wage rate is the aggregate rental price of human capital (R_t) times the stock of human capital:

\begin{equation}
w_{it} = R_t K_{it} \quad \Rightarrow \quad K_{it} = w_{it} / R_t \tag{104}
\end{equation}

Shaw (1989) allows rental prices to vary over time in an unconstrained way. However, as the units of human capital are arbitrary, the rental price must be normalized in one year ($R_1 = 1$).

90 Shaw (1989) also substitutes for consumption at $t+1$ using the familiar relationship $C_t^{\eta} = E_t \rho (1 + r) C_{t+1}^{\eta}$.

91 Recently, Keane (2009b) has proposed a method for estimating models where multiple stochastic terms enter the first order conditions nonlinearly.
An estimable wage equation is obtained by substituting (104) into (103). The parameters to be estimated are the \(\{\alpha\} \), the rental rates, \(\{R_{t}\}_{t=2}^{T} \), and the time dummies, \(\{\tau_{t}\} \).

Shaw (1989) estimates the wage equation using data on white males, aged 18 to 64, from the 1968 to 1981 waves of the PSID. Valid instruments should be uncorrelated with the human capital production shock \(\varepsilon_{it} \) in (103). Shaw uses a polynomial in current wages and hours, along with schooling, age, local unemployment, a South dummy and year dummies.

It is worth commenting on the use of current hours \(h_{it} \) as an instrument. In general, we would expect the person specific productivity shock \(\varepsilon_{it} \) to enter the decision rule for hours. For example, if \(\varepsilon_{it} \) is high, a person realizes his/her human capital is going to rise substantially at time \(t+1 \), even if he/she has low current hours of work. Thus, given diminishing returns to human capital, we would expect the person to work less at time \(t \). Under this scenario, current hours are not a valid instrument. The key assumption that would validate using hours as an instrument is if \(\varepsilon_{it} \) is not revealed until after the worker decides on current hours of work.

Another important point is that, unlike conventional studies in the human capital literature, the wage equation estimated here does not include an individual effect to capture a person’s unobserved skill endowment. Shaw (1989) makes the point that this is not necessary here, because the lagged level of human capital proxies for unobserved ability.

Given (103), the derivative of human capital with respect to hours of work is:

\[
\frac{\partial K_{t+1}}{\partial h_{it}} = \alpha_{3}K_{it} + \alpha_{4} + 2\alpha_{5}h_{it}
\]

The estimates are \(\alpha_{3} = .30 \), \(\alpha_{4} = -3.55 \) and \(\alpha_{5} = .69 \). To interpret these figures, let \(R=1 \), and note that mean hours in the data is 2160 while the mean wage rate is $3.91. Then, noting that \(h_{it} \) is defined as hours divided by 1000, we have, at the mean of the data:

\[
\frac{\partial K_{t+1}}{\partial h_{it}} = (.30)(3.91) - 3.55 + 2(.69)(2.16) = 0.60
\]

This implies, for example, that an extra 500 work hours at time \(t \) (an increase in \(h_{it} \) of 0.5) increases the wage rate at \(t+1 \) by 30 cents per hour. In percentage terms this is a 23% hours increase causing an 8% wage increase – a very strong effect of work experience on wages.

Notice that the positive estimate of \(\alpha_{3} \) implies that hours of work and human capital are compliments in the production of additional human capital. That is, wages rise more quickly with work experience for high wage workers than low wage workers.

92 Note that \(\varepsilon_{it} \) does not affect the wage until \(t+1 \). So the current wage is a valid instrument given the timing.
The estimates also imply that human capital rental rates are quite volatile, although the year specific rental rates are quite imprecisely estimated. Interestingly, Shaw (1989) reports that the series of annual rental rates for the 14 years of data has a correlation of -.815 with an index for the price of fuel. This is consistent with results in Keane (1993) showing that oil price movements in the 70s and 80s had very large effects on real wages in the U.S..

Shaw (1989) estimates the first order condition (102) using a subset of the data (10 years), as the PSID did not collect food consumption in 1967-68 and 1975. The instruments, assumed uncorrelated with the forecast error ξ_{t+1}, include a fully interacted quadratic in the time t values of leisure (defined as 8760 minus hours of work), food consumption, and the wage rate (constructed as annual earnings divided by annual hours). Also included are education, age, the local unemployment rate, a South dummy and time dummies.

The parameter estimates are reasonable, implying that the marginal utility of leisure and consumption are both positive, with diminishing marginal returns. The coefficient on the consumption/leisure interaction is negative, implying hours of work and consumption are compliments. The discount factor is estimated to be 0.958. More interesting however are the simulations of the model.

Unfortunately, first order conditions like (102) are inadequate to simulate the behavior of workers in a life-cycle model. The problem is that the first order condition, combined with the laws of motion for human capital (103) and assets ($A_{t+1} = (1+r)(w_{t}h_{t}-C_{t}+A_{t})$), only tell us how hours, wages and assets move from one period to the next, conditional on a particular starting point. But the assumed starting point is arbitrary. The first order condition cannot be used to determine optimal first period choices implied by the model. For that, we need a “full solution” of a worker’s dynamic optimization problem, an issue I turn to below.

Note that this criticism is not particular to Shaw (1989). It applies to all of the methods based on estimating first order conditions of life-cycle models that I discussed earlier (e.g., MaCurdy (1983) Method #1), and to the life-cycle consistent methods (e.g., MaCurdy (1983) Method #2). Furthermore, this criticism of first order condition methods...

93 MaCurdy (1983) himself emphasized the limitations of all these approaches. As he stated: “Implementing the above procedures yields estimates required to formulate the lifetime preference function, but … this … is not sufficient to determine how a consumer will respond to various shifts in budget or asset accumulation constraints, such as those arising from changes in wages or in tax policies. … To form predictions for such responses, it is necessary to introduce sufficient assumptions to provide for a complete … formulation of the lifetime optimization problem … which, in addition to a function for preferences, requires a full specification for a consumer’s expectations regarding current and future opportunities … Given a particular formulation for the lifetime optimization problem, one … [can conduct] … simulation analysis which involves numerically solving the consumer’s optimization problem for the different situations under consideration.” The numerical procedure that MaCurdy describes here is what I refer to as a “full solution” of the optimization problem.
omits the further problem that even to use first order conditions to simulate forward from an arbitrary starting point, one still needs the know the distribution of the stochastic terms (e.g., the forecast error ξ_{t+1} in (102)). The instrumental variables estimation techniques that are typically used to estimate first order conditions do not deliver estimates of the distributions of the stochastic terms of the model, making even this limited type of analysis infeasible.⁹⁴

These problems are why, when authors have estimated dynamic models using first order conditions or life-cycle consistent methods, they have sometimes used the estimated preference parameters to simulate how workers would respond to tax policy changes under the hypothetical that they live in a static world (with a static budget constraint). An example of this is MaCurdy (1983). In some cases such simulations are informative. For instance, in the simple life-cycle model of equation (15), workers’ response to a permanent anticipated tax change is given by the Marshallian elasticity of the static model (3)-(5), which is given by (6). But only in special cases does such an equivalence hold. It certainly will not hold in a model with human capital, because if a tax change alters labor supply at time t it will also alter the pre-tax wage at $t+1$. Thus, the response to tax changes will generally differ by age.⁹⁵

Consistent with the above discussion, Shaw (1989) conducts her simulations by choosing arbitrary $t=1$ values for wages, hours and assets, and setting the stochastic terms to zero. Despite these limitations, the simulations are interesting. Take a worker starting at age 18 with a wage of $3.30 per hour and working 2200 hours per year. The simulations imply that such a worker’s wage would rise to roughly $3.65 over the first 8 years of employment (an 11% increase), but his/her hours are essentially flat (in fact, they decline very slightly).

This is a more extreme version of pattern found in Heckman (1976). Even though the wage increases by 11% over the first 8 years, the opportunity cost of time (OCT) does not rise at all, as the drop in the human capital return to experience is sufficient to completely outweigh it. As a result, hours do not rise. Thus, a researcher looking at these simulated data through the lens of a model that ignores human capital would conclude there is no inter-temporal substitution whatsoever in labor supply, yet we know that in the true model that generates data there is inter-temporal substitution with respect to the OCT.⁹⁶

⁹⁴ Keane (2009b) develops an estimation method that involves estimating the distribution of stochastic terms that enter first order conditions.

⁹⁵ Indeed Keane (2009a) argues that, in a model with human capital, tax changes cannot be viewed as inducing exogenous changes in after-tax wages, because the worker’s labor supply response to the tax change affects his/her wage path, rendering the wage change endogenous.

⁹⁶ Shaw (1989) admits that her model actually provides a rather poor fit to the data because hours for youth do in fact exhibit a moderate rise in the first several years after they enter the labor market. She attributes this to factors omitted from the model. Note, however, that it is the very large experience return in her model that drives this result, by causing the opportunity cost of time to greatly exceed the wage at $t=1$.

78
To my knowledge, only two papers have used full solution methods to estimate life-
cycle labor supply models that include both human capital investment and assets: Keane and
Wolpin (2001) and Imai and Keane (2004). Of these, only Imai-Keane allow for continuous
choice of hours – as in most of the male supply literature – so I discuss that paper first. As the
model in Imai and Keane (2004) is rather complex I present a simplified version that captures
the main points. Assume that a worker’s human capital evolves according to:

\[K_{t,t+1} = (1 + \alpha h_t)K_t \]

\(K_{t1} \) is the person’s skill endowment at the time of labor force entry.\(^{97}\) A person’s wage at \(t \) is
equal to the current stock of human capital times the (constant) rental price of skill \(R \). Human
capital is subject to a transitory productivity shock. Specifically:

\[w_t = RK_t(1 + \varepsilon_{t}) \]

The period specific utility function is given by (3), as in MaCurdy (1981), and assets evolve
according to \(A_{t+1} = (1+r)(A_t + w_t h_t(1-r) - C_t) \). Given this setup, an agent’s state at the start of
any period \(t \) is fully characterized by the vector of state variables \(\Omega_t = \{ K_t, A_t, \varepsilon_t, \beta_t \} \).

Imai and Keane (2004) assume that the shocks to wages (\(\varepsilon_t \)) and tastes (\(\beta_t \)) are
independent over time. Such independence assumptions are common in the literature,
because, as we’ll see, they greatly reduce the computational burden of obtaining a full
solution to the agents’ dynamic optimization problem.\(^{98}\)

To describe the full solution method, I first take the value function for the simple two-
period model (94) and extend it to a multi-period setting (with uncertainty):

\[V_t(K_t, A_t, \varepsilon_t, \beta_t) = \left[\sum_{\tau=t+1}^{T} \mathbb{E}_t \left[\frac{C^{1+\eta}_{\tau}}{1+\eta} - \beta_{\tau} \frac{h_{\tau}^{1+\gamma}}{1+\gamma} \right] \right] + \mathbb{E}_t \left[\sum_{\tau=t+1}^{T} \rho^{\tau-t} \left[\frac{C^{1+\eta}_{\tau}}{1+\eta} - \beta_{\tau} \frac{h_{\tau}^{1+\gamma}}{1+\gamma} \right] \right] (K_{t+1}, A_{t+1}) \]

The value function now has a \(t \) subscript, as it is specific to time period \(t \), as opposed to being a
lifetime value function. The arguments of the value function are the complete vector of state
variables. The first term on the right hand side of (107) is current utility at time \(t \). The second
term is the expected present value of utility in all periods from \(t+1 \) until the terminal period \(T \).

The notation \(\mathbb{E}_t \{ \cdot \mid (K_{t+1}, A_{t+1}) \} \) indicates that the expectation \(\mathbb{E}_t \) is taken conditional
on next period’s state variables \(K_{t+1} \) and \(A_{t+1} \). This is possible because the model is set up so

\(^{97}\) Imai and Keane (2004) actually assume a much more complex process, designed to capture patterns of
complimentarity between human capital and hours of work in the human capital production function. But use of
the simpler form in (105) helps to clarify the key points.

\(^{98}\) Stochastic terms such as tastes for work are often assumed to consist of a part that is constant over time and
part that is stochastic. The constant part is no different from any other utility function parameter (i.e., \(\eta \) or \(\gamma \)).
human capital and assets evolve deterministically – i.e., given \((K_t, A_t)\) and the current choice \((C_t, h_t)\), the worker knows the resulting \((K_{t+1}, A_{t+1})\) with certainty. It is important to note that the expectation is taken assuming choices will be made optimally in all future periods. As a result, it is often called the “Emax” or “Emax_t” function for short.

Uncertainty in the model arises from only two sources: the wage shocks \(\varepsilon_t\) and taste shocks \(\beta_t\).\(^{99}\) Thus, the expectation \(\mathbb{E}_{t+1}\{\cdot | (K_{t+1}, A_{t+1})\}\) in (107) is taken over possible \(t+1\) realizations of \(\varepsilon_{t+1}\) and \(\beta_{t+1}\). Because of the independence assumption, \(\varepsilon_t\) and \(\beta_t\) do not help predict \(\varepsilon_{t+1}\) and \(\beta_{t+1}\). Thus, they drop out of the conditioning set. This is why independence greatly reduces the computational burden of solving the agent’s optimization problem.

To obtain a full solution of the agent’s problem, we must (in principle) solve for the value functions in (107) at every possible state point. This is done via a “backsolving” procedure, where we start with the terminal period \(T\). That is, we start by calculating \(V_T(K_T, A_T, \varepsilon_T, \beta_T)\) for every possible state \((K_T, A_T, \varepsilon_T, \beta_T)\) at which the worker might enter period \(T\).

Note that in the terminal period we simply have:

\[
(108) \quad V_T(K_T, A_T, \varepsilon_T, \beta_T) = \max_{C_T, h_T} \left\{ \frac{C_T^{1+\eta}}{1+\eta} - \frac{h_T^{1+\gamma}}{1+\gamma} \right\}
\]

As there is no future beyond \(T\), we have a simple static problem. Given \(w_T = RK_T(1+\varepsilon_T)\) and \(A_T\), the consumer chooses consumption and hours of work to maximize utility at time \(T\) subject to the static budget constraint \(C_T = w_T h_T (1-\tau) + A_T.\(^{100}\)

The solution to this static problem for any particular state \((K_T, A_T, \varepsilon_T, \beta_T)\) is given by:

\[
(109) \quad \frac{\beta_T h_T^{\eta}}{[w_T h_T (1-\tau_T) + A_T]^\eta} = w_T (1-\tau)
\]

which can be solved for the optimal \(h_T\) via an iterative search procedure.\(^{101}\) Once the optimal

\(^{99}\) Uncertainty, and hence the need to take an expectation of the time \(t+1\) outcome, may arise for a number of other reasons. For instance, the rental rate on human capital may evolve stochastically, as in Shaw (1989). Or there may be a stochastic component to how interest rates or tax rates evolve. Such features may be incorporated fairly simply, but they would complicate the exposition.

\(^{100}\) For expositional simplicity I assume the end of the working life \(T\) corresponds to the end of life, and there are no bequests. Hence, the worker consumes all of his/her remaining assets at time \(T\). In Imai and Keane (2004) the worker values carrying assets into \(T+1\) as savings for retirement and for bequests. These extensions are handled by adding to (108) an additional term \(f(A_{T+1})\) that represents the value of assets carried into period \(T+1\).

\(^{101}\) As an aside, I’d argue that the basic idea of the life-cycle model with human capital – that working hard today improves one’s prospects tomorrow – is one that most people find quite intuitive. Yet one often hears academic economists argue that people can’t behave as if they solve dynamic optimization problems because the math involved is too daunting. On the other hand, one doesn’t often hear academic economists argue that people can’t behave according to a static labor supply model because they can’t solve an implicit equation for hours like (109). I suspect that most people would find solving an implicit equation daunting as well.
is determined, the optimal C_T is obtained from the budget constraint, and these are both plugged into (108) to obtain $V_T(K_T, A_T, e_T, \beta_T)$ at that particular state point.

We see immediately however that it is not feasible to solve for $V_T(K_T, A_T, e_T, \beta_T)$ at literally every state point: the number of possible levels of human capital, assets, productivity shocks and tastes for work at the start of period T is extremely large, if not infinite. Keane and Wolpin (1994) developed an approach to this problem that has become quite widely used in the literature on dynamic models. The idea is to calculate the E_{max}, terms like those on the right side of (107) at only a finite (and relatively small) subset of the state points. One then interpolates the E_{max} values at the remaining state points.\footnote{Alternative solution methods are discussed in detail in a number of references, including Rust (1987), Geweke and Keane (2001) and Aguirregebaria and Mira (2010)}

To illustrate how the procedure works, we start by using (108)-(109) to calculate $V_T(K_T, A_T, e_T, \beta_T)$ at a set of D randomly chosen state points. Denote these solutions by $V_T(K_T^d, A_T^d, e_T^d, \beta_T^d)$ for $d=1,..,D$. We now choose an interpolating function to approximate $E_{\text{max}}(K_T, A_T) \equiv E_{T-1}\{ \cdot \mid (K_T, A_T) \}$ at points (K_T, A_T) that are not among the selected points.

Denote the interpolating function that approximates $E_{\text{max}}(K_T, A_T)$ by:

$$
\pi_T(K_T, A_T) \approx E_{T-1}\{ V_T(K_T, A_T, e_T, \beta_T) \mid (K_T, A_T) \}
$$

wh rae $\frac{\partial \pi_T}{\partial K_T} > 0$, $\frac{\partial \pi_T}{\partial A_T} > 0$. We must assume that π_T is a smooth differentiable function of K_T and A_T (e.g., a polynomial) for the next step. For expositional convenience, let’s assume the π_T function is the following simple function of K_T and A_T:

$$(110) \quad \pi_T(K_T, A_T) = \pi_{T0} + \pi_{T1} \ln K_T + \pi_{T2} \ln A_T$$

We now estimate the parameters of this function by regressing the $V_T(K_T^d, A_T^d, e_T^d, \beta_T^d)$ on (K_T^d, A_T^d) for $d=1,..,D$.

Note that e_T^d and β_T^d should \underline{not} be included in the regression in (110), as the worker does not use these variables to forecast $V_T(K_T^d, A_T^d, e_T^d, \beta_T^d)$. The regression is meant to give a prediction of $V_T(K_T^d, A_T^d, e_T^d, \beta_T^d)$ based \underline{only} on (K_T^d, A_T^d), which is how E_{max} is defined.

Once we have fit the regression in (110), we can use it to predict or interpolate the value of $E_{T-1}\{ V_T(K_T, A_T, e_T, \beta_T) \mid (K_T, A_T) \}$ at any desired state point (K_T, A_T), including, in particular, values of (K_T, A_T) that were not amongst those used to fit the regression. Thus, we may proceed as if $E_{T-1}\{ V_T(K_T, A_T, e_T, \beta_T) \mid (K_T, A_T) \}$ is known at every possible state (K_T, A_T).
The next step of the backsolving process is to move back to period $T-1$. To do this, we will need to be able to solve for $V_{T-1}(\cdot)$ at any particular state point $(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1})$. Note that at time $T-1$ equation (107) takes the form:

$$V_{T-1}(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1}) = \max_{C_{T-1}, h_{T-1}} \left\{ \left[\frac{C_{T-1}^{1+\eta}}{1+\eta} - \beta_{T-1} \frac{h_{T-1}^{1+\gamma}}{1+\gamma} \right] + \rho E_{T-1} \left[\left[\frac{C_{T-1}^{1+\eta}}{1+\eta} - \beta_{T-1} \frac{h_{T-1}^{1+\gamma}}{1+\gamma} \right] (K_T, A_T) \right] \right\}$$

But if we substitute our approximating polynomial $\pi_T(K_T, A_T) \approx E_{T-1} \{V_T(\cdot) \mid (K_T, A_T)\}$ for the expectation term on the right we obtain simply:

$$(111) \quad V_{T-1}(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1}) \approx \max_{C_{T-1}, h_{T-1}} \left\{ \left[\frac{C_{T-1}^{1+\eta}}{1+\eta} - \beta_{T-1} \frac{h_{T-1}^{1+\gamma}}{1+\gamma} \right] + \rho \pi_T(K_T, A_T) \right\}$$

Using (110), and substituting in the laws of motion for assets and human capital, we obtain:

$$V_{T-1} = \frac{C_{T-1}^{1+\eta}}{1+\eta} - \beta_{T-1} \frac{h_{T-1}^{1+\gamma}}{1+\gamma} + \rho \{ \pi_{T0} + \pi_{T1} \ln K_{T-1}(1+\alpha h_{T-1}) + \pi_{T2} \ln(1+r)[w_{T-1}h_{T-1}(1-\tau) - C_{T-1} + A_{T-1}] \}$$

Notice that finding the optimal values of C_{T-1} and h_{T-1} is now just like a static optimization problem. We have the first order conditions:

$$\begin{align}
\frac{\partial V_{T-1}}{\partial h_{T-1}} &= -\beta_{T-1} h_{T-1}^{\gamma-1} + \rho \pi_{T1} \frac{\alpha}{(1+\alpha h_{T-1})} + \rho \pi_{T2} \frac{w_{T-1}(1-\tau)}{w_{T-1}h_{T-1}(1-\tau) - C_{T-1} + A_{T-1}} = 0 \\
\frac{\partial V_{T-1}}{\partial C_{T-1}} &= C_{T-1}^{\eta-1} - \rho \pi_{T2} \frac{1}{w_{T-1}h_{T-1}(1-\tau) - C_{T-1} + A_{T-1}} = 0
\end{align}$$

These two equations can be solved numerically to obtain the optimal (C_{T-1}, h_{T-1}). These values can be plugged into (111) to obtain $V_{T-1}(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1})$. Thus, given the interpolating function $\pi_T(K_T, A_T)$ we have a simple way to solve for $V_{T-1}(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1})$ at any state point $(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1})$ that might arise at $T-1$.

The next step of the backsolving process is to fit a interpolating regression like (110) to approximate $E_{T-1} \{V_T(\cdot) \mid (K_T, A_T)\}$. We have already devised a way to solve for $V_{T-1}(\cdot)$ at any particular state point $(K_{T-1}, A_{T-1}, \varepsilon_{T-1}, \beta_{T-1})$. So we randomly pick a subset of D possible state points and solve for $V_{T-1}(\cdot)$ at those points. Denote these solutions by $V_{T-1}(K_{T-1}^d, A_{T-1}^d, \varepsilon_{T-1}^d, \beta_{T-1}^d)$ for $d=1,\ldots,D$. We obtain a new interpolating function $\pi_T(K_{T-1}, A_{T-1})$ by running a regression of the $V_{T-1}(K_{T-1}^d, A_{T-1}^d, \varepsilon_{T-1}^d, \beta_{T-1}^d)$ on the (K_{T-1}^d, A_{T-1}^d), as in (110). Using this interpolating
function, we can write the (approximate) value functions at time $T-2$ as:

$$V_{T-2}(K_{T-2}, A_{T-2}, \bar{b}_{T-2}, \beta_{T-2}) \approx \max_{C_{T-2}, h_{T-2}} \left\{ \frac{C_{T-2}^{1+\eta}}{1+\eta} - \beta_{T-2}^{1+\gamma} \frac{h_{T-2}^{1+\gamma}}{1+\gamma} + \rho \pi_{T-1}(K_{T-1}, A_{T-1}) \right\}$$

Note this is exactly like equation (111), the (approximate) value function at time $T-1$, except here we have an approximating function $\pi_{T-1}(K_{T-1}, A_{T-1})$ with different coefficients. The first order conditions for C_{T-2} and h_{T-2} will look exactly like (112), except with different π values. So the problem at $T-2$ is essentially identical to that at $T-1$. Thus, we can keep repeating the above steps until we obtain an approximate solution for every period back to $t=1$.

When the backsolving process is finished, the (approximate) full solution consists of the complete set of interpolating functions $\pi_t(K_t, A_t)$ for $t = 2, \ldots, T$. Using these interpolating functions we can solve simple two equation systems like (112) to find optimal choices of a worker at any point in the state space. In particular, using $\pi_2(K_2, A_2)$ we can solve for optimal labor supply and consumption in period $t=1$, the first period of the working life. As I discussed earlier, this is what first order conditions alone do not allow one to do.

Furthermore, by drawing values for the productivity and taste shocks and repeatedly solving equations like (112) over time, one can simulate entire career paths of workers. This in turn, enables one to simulate how changes in tax rates would affect the entire life-cycle path of labor supply and consumption, as one can re-solve the model and simulate career paths under different settings for the tax parameters.

The model in Imai and Keane (2004) is in most respects similar to that in (105)-(107). The main difference is they use a much richer specification for the human capital production function, designed to capture the empirical regularity that wages grow more quickly with work experience for higher wage workers. The parameters of the human capital production function are also allowed to differ by education level.

Imai and Keane (2004) estimate their model using white males from the National Longitudinal Survey of Youth 1979 (NLSY79). The men in their sample are aged 20 to 36 and, as the focus of their paper is solely on labor supply, those included in the sample are required to have finished school. Due to the computational burden of estimation they randomly choose 1000 men from the NLSY79 sample to use in estimation. People are observed for an average of 7.5 years each, and not necessarily starting from age 16.

Imai and Keane (2004) allow for measurement error in hours, earnings and assets when constructing the likelihood of the data given their model. They use a ratio wage
measure, but account for the resultant denominator bias when forming the likelihood. Given that all outcomes are assumed to be measured with error, construction of the likelihood is fairly simple. One can (1) simulate histories of hours, earnings and assets for each worker, and (2) form the likelihood of a worker’s observed history as the joint density of the set of measurement errors necessary to reconcile the observed history with the simulated data.\footnote{Keane and Wolpin (2001) first developed this approach to forming the likelihood in dynamic models.}

Imai and Keane (2004) estimate that $\gamma = 0.26$. In a model without human capital this would imply a Frisch elasticity of $(1/\gamma) = 3.8$, which implies a much higher willingness to substitute labor intertemporally than in any estimation we have discussed so far (with the sole exception of MaCurdy (1983)). What accounts for this wide divergence in results?

Imai and Keane argue that the failure of prior studies to account for human capital will have led them to severely under-estimate $(1/\gamma)$. The logic of their argument is described in Figure 4, which gives a stylized plot of male wages and hours over the life-cycle.\footnote{That is, it does not plot any particular data set, but simply illustrates the typical patterns for male wages and hours observed across a broad range of data sets.} The black line represents annual hours of work, which has a hump shape as shown in the descriptive regressions presented by Pencavel (1986), with a peak at roughly age 45 and a fairly rapid decline in the 50s and 60s. The red line is the wage rate, which also has a hump shape. As has been noted by many studies, male wages grow rapidly early in the life-cycle, peak in the 40s, and then decline. The details differ by education level.

Now, as we have seen, the typical study in the male labor supply literature regresses hours (or hours growth) on wages (or wage growth). To deal with endogeneity, it instruments wages (or wage growth) primarily using polynomials in age and education. These instruments are chosen precisely because they capture the hump shape of the life-cycle wage path shown in Figure 4; of course, predicted wages based on these instruments closely track the typical life-cycle wage path depicted in the figure.\footnote{This is true despite the fact that these instruments provide a rather poor fit to individual level wage changes.} Thus, when one regresses hours on predicted wages, one essentially uncovers the relative slope of the hours and wage curves in Figure 4. The wage path is much steeper than the hours path over most of the life-cycle, so the estimated elasticity of hours with respect to predicted wages will be much less than 1.0.

The blue line in Figure 4 represents the return to human capital investment – i.e., the return to an additional hour of work in terms of increased future earnings captured by the second term on the right hand side of equation (99). The Imai and Keane (2004) estimates imply that at age 20 this human capital return is actually slightly larger than the wage itself, which is why in Figure 4 the blue line is drawn as starting slightly higher than the red line. Of
course, the human capital investment return declines with age, both because of diminishing returns to human capital and because the worker approaches the end of the planning horizon T. By age 36 the human capital return is only 25% as large as the wage.

The purple line in Figure 4 is the opportunity cost of time (OCT) which equals the wage plus the human capital return to an hour of work. The Imai-Keane estimates imply that from age 20 to 36 the mean of the OCT increases by only 13%. In contrast, the mean wage rate increases by 90% in the actual data, and 86% in the simulated data (recall that their sample stops at age 36). Thus, the wage increases about 6.5 times faster than the OCT. As a result, if we use the relative slopes of the hours and OCT curves to uncover how responsive hours are to changes in the price of time, we will obtain an estimate of $(1/\gamma)$ about 6.5 times larger than conventional methods (which compare relative slopes of the hours and wage curves). This is the Imai-Keane argument for why they obtain such a large value of $(1/\gamma)$.\(^{106}\)

Whether the Imai and Keane estimate of $(1/\gamma)$ is credible hinges on several factors. Two in particular are: (1) Can their model replicate results from earlier studies?, and (2) is it plausible that the bias from omitting human capital is as great as Imai and Keane claim?

To address the first issue, Imai and Keane simulate data from their model, and apply instrumental variable methods like those in MaCurdy (1981) and Altonji (1986) to estimate $(1/\gamma)$. They obtain estimates of .325 (standard error = .256) and .476 (standard error = .182), respectively. Thus, the model generates life-cycle histories that, viewed through the lens of models that ignore human capital, imply low Frisch elasticities like those obtained in most prior work. In other words, the model does not generate data that exhibit an oddly high level of positive co-movement between hours and wages compared to the actual data.

As further confirmation of this point, the authors compare simple OLS regressions of hours changes on wage changes for both the NLSY79 and simulated data from their model. The estimates are -0.231 and -0.293, respectively. This shows two things: (i) the model does a good job of fitting the raw correlation between hours changes and wage changes in the data, and (ii) a negative correlation between hours changes and wage changes in the raw data is not inconsistent with a high willingness to substitute labor inter-temporally over the life-cycle. What reconciles these \textit{prima facie} contradictory phenomena is the divergence between the OCT and the wage in a world with returns to work experience.

To address the second issue – is it plausible that the bias from omitting human capital

\(^{106}\) French (2005), in a study of retirement behavior, also obtains a rather large value of $(1/\gamma) = 1.33$ for the inter-temporal elasticity of substitution for 60 year olds in the PSID. As both Shaw (1989) and Imai and Keane (2004) note, human capital investment is not so important for people late in the life-cycle. For them, the wage will be close to the OCT, and the bias that results from ignoring human capital will be much less severe.

85
is as large as Imai and Keane claim? – I have done a simple back-of-the-envelope calculation
using the simple two-period model of equations (93)-(98). If we divide (96) by (95), using
(97) to cancel out the consumption terms, we obtain:

$$\left(\frac{h_2}{h_1}\right)^\gamma = \frac{\beta_1}{\beta_2} \frac{w_1(1+\alpha h_1)(1-\tau_2)}{\rho(1+r)w_1(1-\tau_1) + \rho\alpha w_1 h_2(1-\tau_2)}$$

We can simplify this to a more intuitive expression if we plug in $w_2 = w_1(1+\alpha h_1)$, assume
that $\tau_1 = \tau_2 = \tau$, and take logs to obtain:

$$\ln\left(\frac{h_2}{h_1}\right) = \left(\frac{1}{\gamma}\right) \left(\ln\left(\frac{w_2}{w_1}\right) - \ln\left(1+\alpha h_2/(1+r)\right) - \ln\rho(1+r) - \ln\left(\frac{\beta_2}{\beta_1}\right)\right)$$

This is the same as the first difference log wage equations often used to estimate the Frisch
elasticity (e.g., see (25)), except now we have the additional term $-\ln(1+\alpha h_2/(1+r))$. If $\alpha>0$
this is negative. So the existence of learning-by-doing will, ceteris paribus, cause workers to
shift hours towards the early part of the life-cycle. Hence, hours grow less over the life-cycle
than if wage growth were exogenous. A model that ignores learning-by-doing will rationalize
the apparently small response of hours to wage growth by understating $(1/\gamma)$.

How large is this bias likely to be? One way to look at the problem is to simplify
(114) by assuming that $\rho(1+r)=1$ and that $\beta_1 = \beta_2$. Then we can solve (114) for $(1/\gamma)$ to obtain:

$$\frac{1}{\gamma} = \ln\left(\frac{h_2}{h_1}\right) = \left[\ln\left(\frac{w_2}{w_1(1+\alpha h_2/(1+r))}\right)\right]$$

Equation says that, if $\alpha=0$, we could calculate $(1/\gamma)$ just by taking the ratio of hours growth to
wage growth. This is analogous to the standard regression procedure for estimating the Frisch
elasticity.107 But if $\alpha\neq0$, the term $(1+\alpha h_2/(1+r))$, which tells us how much the OCT exceeds
the wage at $t=1$, comes into play. How large is this term?

In a two-period model each period corresponds to roughly 20 years of the working
life. It is plausible (in fact, conservative) in light of existing estimates that αh_1, the percentage
growth in the wage rate over the first 20 years, is on the order of 33%.108 A plausible value
for hours growth from age 25 to the peak at roughly age 45 is a modest value like 20%, which
implies that αh_2 is roughly $33\% \times (1.20) = 40\%$. A reasonable value for $1/(1+r)$ is 0.554. Thus,
a plausible value for the term $(1+\alpha h_2/(1+r))$ is about $1+(.40)(0.554) = 1.22$.

107 Of course, in this simple model we abstract from any complicating factors that would require us to use IV.
108 For instance, using the PSID, Geweke and Keane (2000) estimate that for men with a high school degree,
average earnings growth from age 25 to 45 is 33%. For men with a college degree they estimate 52%. Most of
this earnings growth is in fact due to wage growth, because the growth in hours is modest.
What does a value of \((1 + \alpha h^2/(1+r)) = 1.22 \) imply for bias in estimates of \(1/\gamma \)? In our example, hours grew 20% while wages grew 33%. So, using (115), we obtain \(1/\gamma = \ln(1.20) \div \ln(1.33/1.22) = 2.1 \). However, if we mistakenly ignored the human capital term, we would instead obtain \(1/\gamma = \ln(1.20) \div \ln(1.33) = 0.6 \). Thus, in this simple example, plausible (and in fact conservative) values for the returns to work experience bias the estimate of \(1/\gamma \) down by a factor of 3.5. Larger (yet still plausible) returns to experience lead to larger biases.\(^{109}\)

An interesting aspect of this example is that wage growth is entirely endogenous, in that it is solely due to work experience. Yet it is still possible to estimate \(1/\gamma \) by relying on the structure of the model. Note that the OCT in period 2 is just the wage \(w_2 = w_1(1+ah_1) \). The OCT at \(t=1 \) is given by the wage plus the human capital term, \(w_1(1 + ah_2/(1+r)) \). Taking the ratio of the two we get that the growth in the OCT is \((1+ah_1)/(1+ ah_2/(1+r)) \). Taking the ratio of hours growth to OCT growth delivers the correct estimate of \(1/\gamma \).

Imai and Keane (2004) also estimate that \(\eta = -0.74 \). This is less negative than in many prior studies, implying weaker income effects, and a more willingness to inter-temporally substitute consumption. But as we’ll see below, a number of recent studies obtain similar values. To put the Imai and Keane estimates of \(\gamma \) and \(\eta \) in a familiar context, we can follow MaCurdy (1983) and calculate what they imply for the behavior of a worker with such preferences living in a static world. The implied Marshallian elasticity is \((1+\eta)/(\gamma-\eta) = 0.26 \), and the Hicks elasticity is \(1/(\gamma-\eta) = 1.0 \). We’ve seen that in the life-cycle model without human capital these elasticities would be relevant for permanent unanticipated tax changes.

However, the Imai and Keane model suggests these elasticities are not relevant once human capital is introduced. Specifically, I used their model to simulate a permanent 10% tax on earnings introduced (unanticipated) at age 45, 50, 55 or 65, respectively. Under a scenario where the revenue is thrown away, the estimated labor supply effects are -1.1%, -2.3%, -5.3% and -9.5% respectively. The growth in the uncompensated elasticity with age is dramatic.

I also used the Imai and Keane model to simulate the effect of a permanent 10% tax rate increase (starting at age 20) on labor supply over the whole working life. If the revenue is thrown away the model implies that average hours of work (from age 20 to 65) drop from 1992 to 1954 per year, a 2% drop. If the revenue is redistributed as a lump sum transfer labor supply drops to 1861 hours, a 6.6% drop. So the uncompensated and compensated elasticities with respect to permanent tax changes implied by the model are 0.20 and 0.66, respectively.

\(^{109}\) For instance, a back-of-the-envelope calculation in Keane (2010) shows that, given consensus values for the return to work experience in the U.S., at age 20 the OCT is roughly double the wage, while at age 40 it is only 20% greater. This implies the OCT grows about 6 times more slowly than the wage, leading to a downward bias by a factor of 6 in calculating \(1/\gamma \). These figures are very similar to the Imai-Keane (2004) estimates.
However, as Table 5 indicates, the effects of such a permanent tax increase differ greatly by age. Tax effects on labor supply are slowly rising from age 20 to about age 40. Starting in the 40s, the effects on labor supply start to grow very quickly, and by age 60 they are very substantial. Thus, in response to a permanent tax increase, workers not only reduce labor supply, but also shift their lifetime labor supply out of older ages towards younger ages.

Imai and Keane (2004) also simulate workers’ response to a 2% temporary and unanticipated wage increase. This generates primarily an intertemporal substitution effect, as such a short-lived wage increase has a small effect on lifetime wealth (at least for relatively young workers). For a person at age 20 the increase in hours is only 0.6%, which, in contrast to the estimate of \(\frac{1}{\gamma} = 3.8 \), seems to imply rather weak intertemporal substitution effects. The reconciliation lies in the fact that, according to Imai and Keane’s estimates, at age 20 the wage is less than half the opportunity cost of time. As we would expect, the strength of the substitution effect rises steadily with age. At age 60 the increase in hours is nearly 4%, and at age 65 it is about 5.5%.\(^{110}\)

Keane (2009a) points out that existence of returns to experience has important implications for tax policy. If we look at (98), we see that a temporary \(t=1 \) tax increase affects only the current wage \(w_1(1-\tau_1) \). But a permanent tax increase, which increases both \(\tau_1 \) and \(\tau_2 \), reduces the human return \(\alpha w_1 h_2(1-\tau_2)/(1+r) \) as well. Thus, the permanent tax change may have a larger effect on the OCT at \(t=1 \) than a temporary tax change. So, contrary to conventional wisdom, a permanent tax change may have a larger effect on current labor supply than a temporary tax change.

I say “may” because, as Keane (2009a) shows, with both human capital and savings it is theoretically ambiguous whether a permanent or transitory tax change has a larger effect on current labor supply. A permanent change has both (i) a larger income effect and (ii) a larger effect on the return to human capital. These factors work in opposite directions. Keane (2009a) presents simulations showing that for plausible parameter values the human capital effect can dominate, so that permanent tax changes have larger effects.

Keane and Wolpin (2001) set up a model where a person, from ages 16 to 65, decides every period whether to work and/or attend school either full-time, part-time or not at all. Choices are not mutually exclusive (e.g., a youth might work part-time while attending college). Somewhat unusually in the literature on life-cycle models, their model has three decision periods per year (the two school semesters and the summer). The authors did this to

\(^{110}\) It is important to bear in mind that these are lower bounds on Frisch elasticities, as, particularly at older ages, the wealth effect of a one period wage increase may be considerable.
allow for the fact that youth could work summers to finance school. The model is fit to panel data from the NLSY79. This contains people who were 14-21 years old in January 1979. The estimation sample consists of 1051 white males who are followed from age 16 until 1992. The maximum age attained in the sample is 30. The NLSY79 collected comprehensive asset data beginning in 1985, making it possible to estimate a model that includes savings. A key feature of the Keane and Wolpin (2001) model is that, while it includes savings, it also allows for liquidity constraints (i.e., an upper bound on uncollateralized borrowing). The model fits data on assets, school attendance and work from age 16 to 30 quite well.

The focus of the Keane and Wolpin (2001) paper was not on labor supply per se, but on school attendance decisions. The work options are discrete (full-time, part-time or not at all), so I can’t directly compare their results to elasticity estimates from the papers I discussed previously. However, the paper is still of interest here because it assumes a CRRA utility function in consumption, so it provides an estimate of the key preference parameter \(\eta \) in (3), in a context with both human capital and saving (as in Imai and Keane (2004)).

Keane and Wolpin (2001) obtain \(\eta \approx -0.50 \). This compares to the \(\eta = -0.74 \) obtained by Imai and Keane (2004). The Imai-Keane estimate of \(\eta \) implies a slightly lower inter-temporal elasticity of substitution in consumption than the Keane-Wolpin estimate (i.e., \(1/\eta = 1/(-0.74) = -1.35 \) vs. \(1/(-0.50) = -2.0 \)).\(^{111}\) However, both estimates imply weaker income effects, and a higher willingness to substitute inter-temporally, than much of the prior literature.

Keane and Wolpin (2001, p. 1078) discuss how failure to model liquidity constraints may have led to downward bias in prior estimates of \(\eta \).\(^{112}\) A number of other recent studies also give credibility to values of \(\eta \) in the -0.5 to -0.75 range. Goeree, Holt and Palfrey (2003) present extensive experimental evidence, as well as evidence from field auction data, in favor of \(\eta \approx -0.4 \) to -0.5. Bajari and Hortacsu (2005) estimate \(\eta \approx -0.75 \) from auction data.

Finally, Keane (2009a) uses the Keane and Wolpin (2001) and Imai and Keane (2004) estimates of \(\gamma \) and \(\eta \) to calibrate the simple two period model of equation (94), and uses the model to provide some simulations of the welfare cost of income taxation. To do this he augments the model to include a public good \(P \) financed by taxation, as in:

\[
V = \lambda f(P) + \left[w_1 h_1 (1 - \tau) + b \right]^{1+\eta} \frac{h_1^{1+\gamma}}{1+\gamma} - \beta \frac{h_1^{1+\gamma}}{1+\gamma} + \rho \left[\lambda f(P) + \left[w_2 h_2 (1 - \tau) - b(1 + r) \right]^{1+\eta} - \beta \frac{h_2^{1+\gamma}}{1+\gamma} \right]
\]

\(^{111}\) Recall that the inter-temporal elasticity of substitution in consumption measures the drop in current consumption in response to an increase in the interest rate (i.e., the willingness to sacrifice current consumption for higher future consumption).

\(^{112}\) Specifically, without constraints on uncollateralized borrowing, one needs a large negative \(\eta \) to rationalize why youth with steep age-earnings profiles don’t borrow heavily in anticipation of higher earnings in later life.
where \(\lambda_f(P) \) indicates how people value the public good. The government provides the same level of the public good \(P \) in both periods, and the government budget constraint requires that \(P + P/(1+r) \) equals the present value of tax revenues. The benevolent government sets the tax rate optimally to equate marginal utility of consumption of the public and private goods.\(^{113}\)

As we have a two period model we can think of each period as roughly 20 years of a 40 year working life (e.g., 25 to 44 and 45 to 64). The real annual interest rate is set at 3%, giving a 20 year interest rate of \(r = .806 \), and the discount factor is set to \(\rho = 1/(1+r) = 0.554 \).

I set the initial tax rates \(\tau_1 = \tau_2 = .40 \). The wage equation is similar to (93), but augmented to include a quadratic in hours and to allow for depreciation of skills. Wage equation parameters are calibrated so the simulations imply roughly 33% to 50% earnings growth for men from age 25 to 45, which is comparable to what Geweke and Keane (2000) find in the PSID.

Table 6 summarizes some of the main results from Keane (2009a). The table presents welfare losses from a proportional flat-rate income tax, relative to a lump sum tax, expressed as a fraction of consumption, under a number of parameterizations of the simple two-period model. The top panel presents results with the curvature parameter for consumption set at the Imai and Keane (2004) estimate of \(\eta = -.75 \), while the bottom presents results for the Keane and Wolpin (2001) value of -0.50.\(^{114}\) Each panel presents results for several values of the curvature parameter in hours (\(\gamma \)), from a value of 4, which implies little inter-temporal substitution in leisure, up to a value of 0.25, which implies an inter-temporal elasticity of substitution of labor supply of 4, close to the Imai and Keane (2004) estimate.

Under the columns labeled “uncompensated” and “compensated elasticity” the table reports simulated elasticities with respect to permanent tax changes.\(^{115}\) Note that very high values of the Frisch elasticity (\(1/\gamma \)) can be consistent with modest uncompensated elasticities. For example, in the \(\eta = -.75, \gamma = 0.25 \) case, which corresponds to the Imai and Keane (2004) estimates, the simulated uncompensated elasticity is a modest 0.205. (Note that this is almost identical to the uncompensated elasticity I obtained when simulating a permanent tax increase in the Imai-Keane (2004) multi-period model.)\(^{116}\)

The welfare cost of income taxation is calculated for three cases: one where utility is

\(^{113}\) In the solution workers ignore the effect of their own actions on \(P \), as each worker makes a trivial contribution to total government revenue. Thus, workers continue to solve equations (95)-(97).

\(^{114}\) As I indicated earlier, these are the only two dynamic life-cycle models for men that include both labor supply and asset accumulation and that are estimated using a full solution method.

\(^{115}\) It is important to note that the compensated and uncompensated elasticities reported in Table 6 are not the traditional Marshallian and Hicks elasticities. Instead they are generalizations of these formulas that apply for the dynamic case with human capital, as given in Keane (2009a).

\(^{116}\) The Hicks elasticity of 0.81 in Table 6 is also fairly close to the value of 0.66 that I obtained when simulating a tax increase with the proceeds distributed lump sum in the Imai-Keane multi-period model.
log(P), one where it is $2P^5$, and one where it is linear in P. This covers a range of degrees of curvature in consumers’ utility from the public good, ranging from more than that for the private good to less. For the Imai and Keane values ($\eta = -.75$ and $\gamma = 0.25$), the welfare losses in the three cases are substantial at 13%, 19% or 35% of consumption, respectively.

Even if we reduce $(1/\gamma)$ to the much more modest value of 1, in which case the uncompensated elasticity is only 0.133, the welfare losses in the three cases are 9%, 11% and 19% of consumption, respectively. Thus, it appears that large welfare losses from income taxation are quite consistent with existing (small) estimates of male labor supply elasticities.

V.D. Summary of the Male Labor Supply Literature

The literature on male labor supply is vast, with many contentious issues. It is thus impossible to arrive at a simple summary. One crude way to summarize the literature is to give a table that lists all the elasticity estimates from the papers I have discussed. I do this in Table 7. In many ways such a table is useless, because it makes no attempt to weigh studies based on their relative merits (quality of data, soundness of approach, etc.). Table 7 in effect ignores all the important issues I discussed in Sections IV-V.

On the other hand, Table 7 is useful for answering the following type of question: “In the male labor supply literature, is there a clear consensus that the Hicks elasticity is small?” Recall that, in Section II, I quoted Saez, Slemrod and Giertz (2009) as indicating that: “with some exceptions, the profession has settled on a value for [the Hicks] elasticity close to zero.” Recall that, in Section II, I quoted Saez, Slemrod and Giertz (2009) as indicating that: “with some exceptions, the profession has settled on a value for [the Hicks] elasticity close to zero.” But, as we see in Table 7, the mean value of the Hicks elasticity across 21 studies reviewed here is 0.30. (Note that 7 studies do not estimate this parameter).

As we have seen, a value of 0.30 for the Hicks elasticity is large enough to generate substantial welfare costs of taxation. For instance, Ziliak and Kniesner (2005) obtain a Hicks elasticity of 0.33, and simulations of their model imply substantial welfare costs. And Blomquist (1983) and Blomquist and Hansson-Busewitz (1990) obtain Hicks elasticities of only 0.11 and 0.13, respectively, yet they also simulate substantial welfare costs from progressive taxation (i.e., 12% and 16% of revenue, respectively, compared to only 2% or 5% under a flat rate tax). Similarly, Ziliak and Kniesner (1999) obtain a Hicks elasticity of 0.13, yet also simulate large welfare losses from taxation. Based on these results, one would have to conclude that a Hicks elasticity of 0.30 is quite sufficient to generate large welfare losses.

It is also interesting to display the estimates graphically, as I do in Figure 5. Note that, of the 21 studies considered here, 13 produce estimates in a tight range from 0.02 to 0.13.

117 At that point I didn’t note that they were specifically referring to the Hicks elasticity, as I had not yet defined the different elasticity concepts.
And 8 studies produce estimates in the 0.27 to 1.22 range. As the figure makes clear, there is an odd gap between 0.13 and 0.27, with no studies falling in that range. Estimates of the Hicks elasticity seem to bifurcate into a low group vs. a high group.

I think it would be difficult to look at Figure 5 and conclude there is a broad consensus within the economics profession that the Hicks elasticity is close to zero – unless one believes all the studies bunched up in the 0.02 to 0.13 range are credible while all those in the 0.27+ range are flawed. I think such a position would be untenable, as one can also point to flaws in all the studies in the 0.02 to 0.13 range (just as in all empirical work).118

The notion there is consensus on a low Hicks elasticity may stem in part from a widespread perception that piecewise-linear budget constraint methods (Burtless and Hausman (1978), Wales and Woodland (1979) and Hausman (1980, 1981)) have been discredited, and that all the high estimates come from this approach. But as I have discussed, a careful reading of literature suggests this is not the case. These methods have sometimes produced low estimates of the Hicks elasticity, while alternative methods have sometimes produced high estimates. There is no clear connection between the methods adopted and the result obtained.

Indeed, as the careful study by Eklöf and Sacklen (2000) showed, divergent results across studies may be better explained by the data used than by the particular empirical methods employed. In particular, they find that studies that use “direct wage measures” (i.e., a question about ones’ wage rate per unit of time, such as hourly or weekly or monthly) tend to get higher estimates of labor supply elasticities than studies that use “ratio wage measures” (i.e., annual earnings divided by annual hours). This is because the denominator bias inherent in taking the ratio biases the wage coefficient in a negative direction.

This pattern can be seen quite clearly in Table 7. Specifically, of the eight studies that obtain “large” values for the Hicks elasticity (i.e., those in the 0.27+ range), six use a direct wage measure (Hall (1973), Hausman (1981), van Soest et al (1990), MaCurdy (1983), Eklöf and Sacklen (2000), Ziliak and Kneisner (2005)), one works with shares to avoid ratios (Wales and Woodland (1979)), and one models the measurement error process to take denominator bias into account in estimation (Imai and Keane (2004)).

Thus, if we give all studies equal weight, the existing literature suggests a Hicks elasticity of 0.30. But if we were to only count studies that use direct wage measures, we

118 For example, Kosters (1969) does not account for endogeneity of wages, Ashenfelter and Heckman (1973) do not account for taxes, MaCurdy et al (1990) and Triest (1990) use ratio wage measures that would lead to denominator bias, Blundell and Walker (1986) do not instrument for full income, and so on.

119 In Denver experiment workers were asked a direct question about their wage rate every month. MaCurdy (1993) is a bit vague about how he constructed his wage measure, but from his description I believe he took an average of the answers to these monthly questions over 12 months to get an annual wage.
would obtain 0.41. Finally, another point I have stressed is the failure of prior studies to account for human capital. The effect of human capital is to dampen the response of younger workers to changes in their wage rates. This is because, for them, the wage is a relatively small part of the opportunity cost of time. I believe this has probably led to downward bias in prior estimates of labor supply elasticities. The one study that accounts for this human capital effect, Imai and Keane (2004), obtained a Hicks elasticity of 0.66.

In summary, to conclude there is consensus on a small Hicks elasticity for males, one has to put essentially all mass on the 13 studies bunched up near zero in Table 7 and Figure 5. This is hard to justify, as these studies do not share any broad common feature in terms of either methodology or data construction. Indeed, the closest they come to a shared feature is that 8 of the 13 use ratio wage measures.

VI. Female Labor Supply

Now I turn to the study of female labor supply. The literature on women has evolved quite differently from that on men. As we saw in Section V, the literature on males has mostly ignored participation decisions, because the large majority of prime-age males do work. Thus, researchers have argued (or hoped) that the selection bias induced by ignoring non-workers would be minimal. The male literature has instead focused on the continuous choice of hours, and emphasized savings as the main source of dynamics.

In contrast, a large percentage of women (especially married women) do not work, so the literature has long focused on modeling the participation decision (see Heckman (1974)). Non-participation brings to the fore: (i) the issue of fixed costs of work (see Cogan (1981)) and how they are influenced by marriage and children, and (ii) the question of how tastes for work are influenced by past work decisions (see, e.g., Heckman and Willis (1977)).

The prevalence of non-participation naturally raises the question of how it may lead to depreciation of human capital. Thus, while the literature on males has mostly treated wages as exogenous, the literature on females has long focused on how work experience affects earnings (see, e.g., Weiss and Gonau (1981), Eckstein and Wolpin (1989)).

Conversely, the literature on women has placed less emphasis on saving as a source of dynamics. This is no accident: as Eckstein and Wolpin (1989) note, it is very computationally

120 There are 13 studies in total that I can determine with some confidence either used direct wage measures or made some attempt to deal with the denominator bias problem. In addition to the 8 cited above, these include Burtless and Hausman (1978), Blomquist (1983), Blomquist and Hansson-Busewitz (1990), and Blundell and Walker (1986) and Ziliak and Kneisner (1999). The average Hicks elasticity among this group is 0.41.

121 That is, marriage and children tend to be modeled as exogenous taste shifters for males, or as variables that shift the budget constraint. But they are not treated as choice variables in any work we are aware of.
difficult to model participation, human capital and saving simultaneously.\footnote{Indeed, to my knowledge the only paper that attempts to do so is Keane and Wolpin (2001). That paper is on labor supply and human capital investment decisions of young men, who often have low participation rates.} So the emphasis on participation and human capital has often come at the expense of not modeling savings.

At least since the pioneering paper by Mincer (1962), the literature on women has found it unsatisfactory (although often practically necessary) to treat marriage and children as exogenous to female labor supply decisions. Instead, it is natural to think of women making decisions – based on their endowments of market and non-market skills – about what fraction of the life-cycle to spend in school vs. market work vs. child rearing, as well as about the timing of marriage and fertility. This life-cycle perspective is already present in Mincer (1962), Heckman and Willis (1977) and Weiss and Gonau (1981).

In Mincer (1962), variation over time in a woman’s market work hours stem from her allocating work to periods when market wages are high relative to the value of home time. He hypothesized that, in a life-cycle setting, a transitory change in husband’s income (which has no effect on his permanent income), should not affect a woman’s labor supply decisions. But Mincer (1962) presented some informal evidence that women do work more if the husband is unemployed, which he took as evidence against a life-cycle model. Of course, alternative explanations are that leisure time of the husband and wife are non-separable in utility, or that unemployed husbands may contribute to home production and/or child care.

The modern literature on life-cycle models of female labor supply begins with Heckman and MaCurdy (1980, 1982). I focus on the second paper, as it corrects an error in the first. The approach is similar to MaCurdy (1981), except they use the utility function:

\begin{equation}
U_{it} = \alpha_{it} \eta^{-1} C_{it}^{\eta} + \beta_{it} \gamma^{-1} (H_{\text{max}} - h_{it})^{\gamma} \quad \eta < 1, \quad \gamma < 1
\end{equation}

Here α_{it} and β_{it} are taste shifters and leisure is given by $L_{it} = (H_{\text{max}} - h_{it})$. The authors assume perfect foresight, so the marginal utility of consumption evolves according to $\lambda_{it} = [\rho(1+r)]^{\lambda_{t0}}$. Thus, if w_{it} is the exogenously given time t wage rate, the first order condition for an interior solution for leisure is the usual MRS condition (analogous to (22)):

\begin{equation}
\frac{\partial U_{it}}{\partial L_{it}} = \lambda_{it} w_{it} \quad \Rightarrow \quad \beta_{it} L_{it}^{\gamma-1} = [\rho(1+r)]^{\frac{\gamma}{\gamma-1}} \lambda_{t0} w_{it}
\end{equation}

Taking logs and rearranging, this gives the Frisch demand function for leisure:

\begin{equation}
\ln L_{it} = \frac{1}{\gamma - 1} \{ \ln w_{it} + \ln \lambda_{t0} + t \ln[\rho(1+r)] - \ln \beta_{it} \}
\end{equation}
Notice that the utility function (116) admits of corner solutions, in contrast to equation (3) that MacCurdy (1981) used for males. To deal with corner solutions, Heckman and MacCurdy (1980, 1982) note that a woman will choose not to work if the marginal utility of leisure, evaluated at zero hours of work, exceeds the marginal value of working. That is, if:

\[
\frac{\partial U_{it}}{\partial L_{it}} \bigg|_{L_{it} = H_{\text{max}}} \geq \lambda_{i0} w_{it} \quad \Rightarrow \quad \beta_{it} H_{\text{max}}^{\gamma - 1} \geq [\rho(1 + r)]^\gamma \lambda_{i0} w_{it}
\]

Taking logs and rearranging, we can write (119) as a reservation wage condition:

\[
h_{it} > 0 \quad \text{iff} \quad \ln w_{it} \geq -\ln \lambda_{i0} - t \ln[\rho(1 + r)] + \ln \beta_{it} - (1 - \gamma) \ln H_{\text{max}}
\]

Notice that if the woman has a lower level of lifetime wealth, and hence a higher value of \(\lambda_{i0} \), her reservation wage is correspondingly reduced.

To obtain an estimable model Heckman and MacCurdy (1980, 1982) next assume functional forms for the taste shifter \(\beta_{it} \) and the wage equation as follows:

\[
\begin{align*}
\ln \beta_{it} &= Z_{it} \phi + \eta_{i0} + \epsilon_{1it} \\
\ln w_{it} &= X_{it} \theta + \eta_{2i} + \epsilon_{2it}
\end{align*}
\]

where \(Z_{it} \) and \(X_{it} \) are vector of observables that affect tastes for work and labor market productivity, respectively, \(\eta_{i0} \) and \(\eta_{2i} \) are unobserved individual fixed effects, and \(\epsilon_{1it} \) and \(\epsilon_{2it} \) are transitory shocks to tastes for work and productivity, respectively. Substituting (121) into (118) and (120) we obtain reduced form equations for (i) leisure conditional on participation and (ii) the participation decision rule:

\[
\begin{align*}
\ln L_{it} &= f_i + X_{it} \frac{\theta}{\gamma - 1} - Z_{it} \frac{\phi}{\gamma - 1} + \frac{\ln[\rho(1 + r)]}{\gamma - 1} t + \frac{\epsilon_{2it} - \epsilon_{1it}}{\gamma - 1} \\
h_{it} > 0 \quad \text{iff} \quad \frac{\epsilon_{2it} - \epsilon_{1it}}{\gamma - 1} < -f_i - X_{it} \frac{\theta}{\gamma - 1} + Z_{it} \frac{\phi}{\gamma - 1} - \frac{\ln[\rho(1 + r)]}{\gamma - 1} t + \ln H_{\text{max}}
\end{align*}
\]

where:

\[
f_i \equiv \frac{1}{\gamma - 1}\{\ln \lambda_{i0} + \eta_{2i} - \eta_{i0}\}
\]

Here \(f_i \) is an individual specific fixed effect which subsumes the marginal utility of wealth term \(\lambda_{i0} \) as well as the individual effects in tastes for work and productivity.

Under the assumptions of the model (i.e., perfect foresight, no borrowing constraints) the fixed effect \(f_i \) is time invariant, and it captures everything relevant from periods outside of
time \(t \) for the woman’s labor supply decision at time \(t \). For example, in this model it is not necessary to control for the current or potential future earnings of a married woman’s husband \(\text{explicitly} \), because that is captured through \(\lambda_{it} \). Consider a married woman whose husband has a high income level. But at time \(t \) he becomes unemployed. This event will have no affect on \(\lambda_{it} \) because by assumption it was anticipated and should have already been built in. The same argument applies to indicators for unemployment or hours of work.\(^{123}\)

While these assumptions seem extreme if taken literally, it is not clear \(a \text{ priori} \) they are necessarily a bad \emph{approximation} to reality, or that they provide a worse approximation than a static model in which women make decisions based only on the current income of the husband. For instance, consider a woman whose husband is in a high wage occupation that is also cyclically volatile (such as a stock trader in New York or a miner in Western Australia). Is it plausible she would substantially revise her perceived lifetime wealth every time his earnings drop in a recession, and alter her labor supply plans as well?

To estimate the model, Heckman and MaCurdy (1980, 1982) assume the stochastic terms \(\varepsilon_{1it} \) and \(\varepsilon_{2it} \) are jointly normal and serially uncorrelated, and set \(H_{\text{max}}=8760 \). They then estimate the hours and participation equations (122)-(123) jointly with the wage equation (121b) by maximum likelihood. The data consist of 30 to 65 year-old married white women from the 1968-75 waves of the PSID. 672 women meet the selection criteria, but to estimate the fixed effects \(f_i \) only women who work at least once can be used, leaving 452.\(^{124}\)

The variables in the wage equation \((X_{it})\) are potential experience (i.e., age-education-6) and its square, and the local unemployment rate. Time invariant covariates (like education) cannot be included, as the wage equation contains a fixed effect.

The variables included as taste shifters \((Z_{it})\) are number of children, children less than 6, the wife’s age,\(^{125}\) and an indicator for if the husband is retired or disabled. Motivated by Mincer (1962), Heckman and MaCurdy (1980, 1982) also include a measure of “other” family income (i.e., income of the husband and other family members), and the number of hours the husband is unemployed. The point is, as noted earlier, that transitory changes in the husband’s income or employment state should not affect the woman’s labor supply decisions.

\(^{123}\) Indeed, in principle in this model it is not even necessary to control explicitly for whether a woman is married, as the woman’s marriage history is also built into \(\lambda_{it} \). For instance, a single woman is assumed to anticipate the earnings potential of any husband she will eventually marry. Marriage can only enter the model because it shifts tastes for work, not because it alters perceived lifetime wealth.

\(^{124}\) If a woman never works we can see from equation (123) that the likelihood of her history is maximized by sending \(f_i \) to \(-\infty\). Heckman and MaCurdy (1980) report results with and without adjusting the likelihood function to account for this sample section criterion, but find it makes little difference.

\(^{125}\) Age may capture the time variable in (122)-(123) so that its coefficient is interpretable as an estimate of \(\ln[(\rho(1+r))/(\gamma-1)] \). But it may also affect tastes for work directly.
under the assumptions of the model. Thus, if these variables show up as taste shifters, it may indicate the model is mis-specified, perhaps due to violation of the perfect foresight or no borrowing constraint assumptions. Of course, there are alternative explanations, as noted earlier (e.g., if leisure time of the husband and wife are non-separable in utility).

Heckman and MaCurdy (1982) estimate $\gamma = -1.44$, which implies a Frisch elasticity of leisure of $1/(\gamma - 1) = -0.41$. Converting to a Frisch labor supply elasticity, and noting that mean hours worked in the sample is about 1300, we have:

$$\frac{\partial \ln h_{it}}{\partial \ln w_{it}} = \frac{\partial \ln h_{it}}{\partial \ln L_{it}} \frac{\partial \ln L_{it}}{\partial \ln w_{it}} = \frac{L_{it}}{H_{\text{max}} - L_{it}} \frac{1}{1 - \gamma} \approx \frac{L_{it}}{h_{it}} \frac{1}{(0.41)} = \frac{7460}{1300} \frac{0.41}{0.41} = 2.35$$

This is quite a large value compared to most of the estimates we saw for men.

The other results of the estimation are mostly rather standard. Tastes for home time are increasing in the number of children, especially children less than 6. Husband unemployment hours are marginally significant and negative. This may suggest the presence of borrowing constraints or failure of the perfect foresight assumption, or it may simply imply that husband time at home increases the wife’s tastes for work. The coefficient on income of other household members is quantitatively fairly large, but only significant at the 20% level. Heckman and MaCurdy (1982) interpret these results as being “less favourable toward the permanent income hypothesis” as compared to the results in their 1980 paper.

As in MaCurdy (1981), Heckman and MaCurdy (1980) conduct a second stage where they regress the fixed effects on various determinants of lifetime wealth. Using (121b) and (124) we can obtain $(\ln \lambda_{i0} - \eta_{i1})$. That is, the marginal utility of wealth minus the fixed effect in tastes for leisure. Heckman and MaCurdy (1980) find this composite is reduced by wife’s education. We would expect education to increase lifetime wealth, thus reducing λ_{i0}, both by increasing own and potential husband’s earnings. But the effect of education on tastes for leisure (η_{i1}) is an empirical question. The result implies either that education increases taste for leisure, or, if it reduces it, that this effect is outweighed by the income effect.

The Heckman and MaCurdy (1980, 1982) papers, as well as earlier work in a static framework by Heckman (1974), have been criticized because, while allowing for a participation decision, they did not accommodate fixed costs of work. Within a static model, Cogan (1981) showed that ignoring fixed costs can lead to severe bias in estimates of labor.

126 This is analogous to the literature on testing for borrowing constraints by including current income in consumption Euler equations. Of course, significance of current income in the consumption Euler equation does not necessarily imply the existence of borrowing constraints. It may also result because income is correlated with hours of employment, provided leisure and consumption are not separable.
supply functions. To see the problem, consider the simple quasi-linear utility function:

\[
U = C + \beta \left(\frac{\overline{H} - h}{1 + \gamma} \right)^{1+\gamma} = (wh + N - F) + \beta \left(\frac{\overline{H} - h}{1 + \gamma} \right)^{1+\gamma}
\]

where \(N\) represents non-labor income and \(F\) represents fixed costs of working (e.g., child care costs). The equation for optimal hours \textit{conditional} on working is simply:

\[
h^* = \overline{H} - (w/\beta)^{1/\gamma}
\]

In the absence of fixed costs the reservation wage would be obtained simply as:

\[
h^* > 0 \quad \Rightarrow \quad \overline{H} - (w/\beta)^{1/\gamma} > 0 \quad \Rightarrow \quad w > \beta \overline{H}^\gamma
\]

However, as Cogan (1981) points out, it is not appropriate to use marginal conditions to determine the participation decision rule in the presence of fixed costs. Instead, we must compare the utilities conditional on working and not working:

\[
U(h^*) = w \left[\overline{H} - (w/\beta)^{1/\gamma} \right] + N - F + \frac{\beta}{1+\gamma} \left[\left(\frac{w}{\beta}\right)^{1/\gamma}\right]^{1+\gamma}
\]

\[
U(0) = N + \frac{\beta}{1+\gamma} \left[\overline{H} \right]^{1+\gamma}
\]

Now the decision rule for working is \(U(h^*) > U(0)\), which can be expressed as:

\[
h^* = \left[\overline{H} - (w/\beta)^{1/\gamma} \right] > \frac{F}{w} + \frac{1}{w} \frac{\beta}{1+\gamma} \left[\overline{H}^{1+\gamma} - \left(\frac{w}{\beta}\right)^{1/\gamma}\right]^{1+\gamma} \equiv h_R > 0
\]

It is instructive to compare (127), which simply says the person works if desired hours are positive \(\left(\overline{H} - (w/\beta)^{1/\gamma} > 0 \right)\), with (129), which says a person only works if optimal hours cross a positive threshold value \(h_R\), which Cogan (1981) refers to as reservation hours. Inspection of the right hand side of the inequality in (129) gives a good intuition for what the threshold entails: optimal hours conditional on working must be high enough to cover fixed costs, plus an additional term which equals the monetized value of the lost utility from leisure.

Thus, with fixed costs, the labor supply function is discontinuous, jumping from zero hours to the reservation hours level when the reservation wage is reached. The specifications assumed in Heckman (1974) and Heckman and MaCurdy (1980, 1982) are not consistent with such behavior. Another key point is that both costs of working \((F)\) and tastes for work
(β) enter the participation equation, while only β enters the labor supply equation. Hence, it is possible a variable like young children may affect fixed costs of work but not tastes for work. Then, it would affect participation decisions but not labor supply conditional on participation.

To estimate labor supply behavior given fixed costs, Cogan (1981) jointly estimates a labor supply function as in (126), a reservation hours function as in (129), and an offer wage function. In contrast, Heckman’s approach is to jointly estimate a labor supply function (126), a participation equation based on marginal conditions as in (127), and an offer wage function.

Cogan (1981) compares both approaches using data on married women aged 30 to 34 from the 1967 National Longitudinal Survey of Mature Women. In the sample, 898 wives worked and 939 did not. The labor supply and reservation hours functions both include the wife’s education and age, number of young children, and husband’s earnings. Cogan estimates that fixed costs are substantial (about 28% of average annual earnings), and that a young child raises fixed costs by about a third. He finds that ignoring fixed costs leads to severe overestimates of labor supply elasticities (conditional on work). Cogan’s labor supply function implies a Marshallian elasticity of 0.89 at the mean of the data, compared to 2.45 when using the Heckman (1974) approach. The Hicks elasticities are 0.93 vs. 2.64.

Cogan also shows, however, that the elasticities are rather meaningless in this context. As he notes, a 10% increase in the offer wage to the average non-working woman in the sample would not induce her to enter the labor market. But a 15% increase would induce her to jump to over 1,327 hours. However, an additional 15% wage increase would “only” induce a further increase of 180 hours (or 13.6%). [Note: this is still a rather large increase, consistent with a Marshallian elasticity of 13.6/15 = 0.90].

An important aspect of Cogan (1981) is that he pays close attention to how the model fits the distribution of hours. This is unusual in the static literature, as the focus tends to be on estimating elasticities rather than simulating behavior. Cogan finds the model without fixed costs cannot explain how few people work at very low hours levels. Indeed, it has to predict that a large fraction of women do work at low hours levels in order to also predict the large fraction of women who do not work at all. As Cogan describes, this leads to a flattening of the labor supply curve, which exaggerates wage elasticities (see his Figure 2). The model with fixed costs provides a much better fit to the data and does not have this problem.

127 The only exceptions I have come across are van Soest, Woittiez and Kapteyn (1990) and Keane and Moffitt (1998). Both papers note that it is rare to observe people working very low levels of hours (the former paper looking at men, the latter looking at single mothers). Van Soest et al (1990) capture this by building in a job offer distribution where few jobs with low levels of hours are available. Keane and Moffitt (1998) build in actual measures of fixed costs of working (e.g., estimates of child care costs).
Kimmel and Kniesner (1998) extend the Heckman and MaCurdy (1980, 1982) analysis to include fixed costs of work. That is, they estimate a labor supply equation analogous to (122) jointly with a participation decision rule and an offer wage function. We can write the system as:

\[(130) \quad \ln h_{it} = f_{hi} + e_F \ln w_{it} + \alpha_h Z_{it} + \epsilon_{hit}\]

\[(131) \quad P(h_{it} > 0) = F(f_{pi} + \beta \ln w_{it} + \alpha_p Z_{it})\]

Here (130) is a Frisch labor supply function. The fixed effect \(f_{hi}\) captures the marginal utility of wealth, along with heterogeneity in tastes for work. Equation (131) gives the probability of participation and \(F\) is a cumulative distribution function (which Kimmel and Kniesner (1998) assume to be normal, giving a probit). The fixed effect \(f_{pi}\) captures not just the marginal utility of wealth and tastes for work, but also individual heterogeneity in fixed costs of work.

Following Cogan (1981), the existence of fixed costs breaks the tight link between the parameters in the participation and labor supply equations that we saw in (122)-(123). Thus, there is no necessary relationship between the parameters \(e_F\) and \(\alpha_h\) in (130) and \(\beta\) and \(\alpha_p\) in (131). In this framework \(e_F\) is the conventional Frisch elasticity of labor supply conditional on employment. But we now introduce a Frisch participation elasticity given by:

\[(132) \quad e_p = \frac{\partial \ln P(h_{it} > 0)}{\partial \ln w_{it}} = \frac{\beta F'(\cdot)}{F(\cdot)}\]

Kimmel and Kniesner (1998) estimate this model using data on 2428 women from the Survey of Income Program Participation (SIPP), 68% of them married. Tri-annual interview information was collected in May 1983 to April 1986, giving 9 periods of data. The variables included in \(Z_{it}\) are marital status, children, education and a quadratic in time. The model is estimated in two stages. In stage one, wages are predicted for workers and non-workers using Heckman’s (1976) two-step procedure. The use of predicted wages serves three purposes: (i) to deal with measurement error, (ii) to fill in missing wages and (iii) to deal with possible endogeneity of wages (which would arise, e.g., if women with high unobserved tastes for work tend to have high wages). Variables that appear in the wage equation but not in \(Z_{it}\) are race and a quadratic in age (potential experience). In stage two, they estimate (130)-(131).

The estimates imply a Frisch elasticity of 0.66 for employed women, and a Frisch participation elasticity of 2.39. Average hours of the entire population is given by \(\bar{h} = P \bar{h}_e\) where \(\bar{h}_e\) is average hours of the employed and \(P\) is the percentage employed. Thus we have:
Kimmel and Kniesner (1998) also obtain results for men, and find $e_F = 0.39$ and $e_P = 0.86$ so that $e_F + e_P = 1.25$. Thus, the results suggest that: (i) the participation elasticity is much larger than the hours elasticity for both women and men, and (ii) the overall elasticity is quite a bit larger for women than men (although the 1.25 value for men is still larger than most results in Table 7). These results provide some justification for models of female labor supply that focus primarily on the participation decision (see below).

As in Shaw (1989), the first step in Altug and Miller (1990) is to estimate how wages depend on work experience. They specify a wage function of the form:

$$\ln \bar{w}_{it} = \omega_i \gamma(Z_{it}) \exp(\epsilon_{it})$$

Z_{it} is a vector containing work experience and other characteristics of person i at time t. $\gamma(Z_{it})$ is a function mapping Z_{it} into skill. γ_i is the time-invariant skill endowment of person i. ω_t is a skill rental price (determined in equilibrium). A key assumption is that ϵ_{it} is purely measurement error. If (133) is expressed as a log wage equation, the $\ln \omega_i$ are individual fixed effects while the $\ln \omega_t$ are time dummies. Given that ϵ_{it} is measurement error, no selection bias problem arises if we estimate (133) by OLS, provided we include fixed effects.128

Altug and Miller (1998) estimate (133) using PSID data from 1967 to 1985. They require that women be in a PSID household for at least 6 consecutive years and that they be employed for at least two years (so that the fixed effects $\ln \omega_i$ can be estimated). This gives a sample of 2,169 women. The data from 1967 to 1974 is used to form indicators of lagged participation and lagged hours, while 1975 to 1985 is used for estimation.

The estimates imply that labor market experience, particularly recent experience, has a large effect on current wages. For instance, a person who worked the average level of hours

\[
\frac{\partial \ln \bar{h}}{\partial \ln w} = \frac{\partial \ln P}{\partial \ln w} + \frac{\partial \ln \bar{h}}{\partial \ln w} = 0.66 + 2.39 = 3.05
\]

128 Altug and Miller (1990) actually estimate the wage equation in first differences, and use GMM to gain efficiency by accounting for serial correlation in the errors. They note Mroz (1987) found selection corrections have little impact on estimates of fixed effects wage equations for women. Similarly, Keane (1990) found selection corrections have little impact on estimates of fixed effects occupational wage equations for males.
for the past four years would have current offer wages about 25% higher than someone who
had not worked. Interestingly, the lagged participation coefficients are negative while lagged
hours coefficients are positive. The implication is that low levels of hours do not increase
human capital: one has to work about 500 to 1000 hours to keep skill from depreciating.

The time dummies from (133) are estimates of the rental price of skill. This falls in
the recession years of ’75 and ’80-’82, while rising in ’77, ’83 and ’85. Thus, the wage is pro-
cylical. Average wages among all women in the PSID sample are slightly more pro-cyclical
than the estimated rental rates. This suggests a compositional effect whereby people with
high lnν_t tend to enter during booms. This is consistent with the mild pro-cyclical bias in
aggregate wage measures for males found by Keane, Moffitt and Runkle (1988).

Altug and Miller (1998) assume a current period utility function of the form:

\[U_{it} = \alpha_{it} \eta^{-1} C_{it}^{\eta} + d_{it} \{ U_0(X_{it}) + U_1(Z_{it}, h_{it}) + \epsilon_{it} \} + (1 - d_{it}) \epsilon_{0it} \]

The first term is a CRRA in consumption. d_{it} is an indicator for positive hours, U_0(·) is the
fixed cost of work and U_1(·) is the disutility of labor. X_{it} is a vector of demographics that shift
tastes for leisure and fixed costs of work. Z_{it} includes X_{it} along with lagged labor supply
decisions that are allowed to shift tastes for leisure. \epsilon_{it} and \epsilon_{0it} are stochastic shocks to tastes
for the work and non-work options, respectively. These may be interpreted as shocks to the
fixed cost of work and the value of home time. Additive separability and the distributional
assumptions on \epsilon_{it} and \epsilon_{0it} play a key role in the estimation procedure, as we’ll see below.

As in Altug and Miller (1990), the authors assume that there is no idiosyncratic risk.
So, using (134), we obtain the following expression for the marginal utility of consumption:

\[\alpha_{it} C_{it}^{\eta-1} = \lambda_{it} = \eta_i \lambda_t \implies \ln C_{it} = \frac{1}{\eta - 1} \{ \ln \eta_i + \ln \lambda_t - \ln \alpha_{it} \} \]

Again, the \lambda_t are aggregate shocks and the \eta_i capture a person’s (time-invariant) position in
the wealth distribution.\footnote{Alternatively, in a social planner’s problem, \eta_i is the inverse of the social planner’s weight on person i.} To obtain an estimable equation we write ln\alpha_{it} = X_{it} \beta + \epsilon_{cit} where X_{it}
and \epsilon_{cit} are observed and unobserved taste shifters for consumption, respectively. Again, this
equation can be estimated by fixed effects (or in first differences), assuming the X_{it} are
exogenous. Altug and Miller (1990) include household size, children, age and region in X_{it}
and the aggregate shocks are estimated as time dummies. The equation is estimated on the
same PSID sample as above (recalling that the PSID contains only food consumption). As we
would expect, the estimated values of \lambda_t are high in the recession years of ’75 and ’80-’82.
In the final step, Altug and Miller (1998) estimate the first order condition for hours jointly with a participation condition that allows for fixed costs of work. As in Shaw (1989), the first order condition for hours is complex because the marginal utility of leisure is not simply equated to the current wage times the marginal utility of consumption. An additional term arises because working today increases future wages and alters future disutilities from work. I’ll refer to this term as the “expected future return to experience.” But the situation here is even more complex than in Shaw (1989) because of non-participation. That is, work today may increase probabilities of participation in the future (an effect not present in Shaw (1989), where the men participate with probability one). Altug and Miller deal with this problem using the Hotz and Miller (1993) estimation algorithm:

First, given estimates of (133) and (135), we can back out estimates of the individual effects v_i and η_i. Second, use non-parametric regression to estimate participation probabilities conditional on the state variables v_i and η_i, work history, and demographics (age, education, marital status, race, children, age and region). Denote these estimates $p_{1i}(S_i)$ where S_i is the vector of state variables. Third, assume the ε_{1it} and ε_{0it} in (134) are iid extreme value, and that they are the only source of randomness in current period payoffs from working vs. not working. Given this, the difference in expected values of working vs. not working are simply $V_{1i}(S_i) - V_{0i}(S_i) = \ln[p_{1i}(S_i)/(1-p_{1i}(S_i))]$, so the value functions at any state can be backed out from the conditional choice probabilities calculated in step 2. This allows one to express the “expected future return to experience” as a simple function of the conditional participation probabilities (and their derivatives with respect to h_{it}).131

It is important to see what is ruled out here. There can be (i) no stochastic variation in the marginal utility of leisure and (ii) no individual level productivity shocks affecting wages, as these additional sources of randomness would preclude obtaining simple expressions for the expected future return to experience. And consumption and leisure must be separable in utility, so the stochastic term in tastes for consumption does not influence labor supply decisions. Thus, the extreme value error and additive separability assumptions are crucial.

In this final estimation step, the parameters to be estimated describe the fixed costs of work $U_0(X_{it})$ and the disutility of labor $U_1(Z_{it}, h_{it})$. Unfortunately, the results are problematic.

130 It is important not to include the aggregate prices λ_t and ω_t in these regressions. Agents are assumed not to know future realizations of these prices, and so cannot condition on them when forming expected future payoffs.

131 Specifically, the “return to experience” term can be written as a function of differences in the expected values of working vs. not working in future states, $V_{1i}(S_i) - V_{0i}(S_i)$, as well as probabilities of working in future states, $p_{1i}(S_i)$, and their derivatives with respect to current hours. See Altug and Miller (1998) equations 6.8 and 6.9, which give the final simple expressions for the labor supply and participation equations. [And notice how the idea here is similar to that in equation (100).]
The estimated $U_1(Z_{it}, h_{it})$ is convex in hours, so the estimated first order condition implies no interior solution. And the fixed costs are very imprecisely estimated. These results may stem in part from the restrictiveness of the assumption of no stochastic variation in tastes for work.

So far I have discussed approaches that involve estimating the MRS condition for optimal hours. I now turn to the “life-cycle consistent” approach, where one estimates labor supply equations that condition on the full income allocated to a period (MaCurdy (1983) Method #2). Recall that Blundell and Walker (1986) estimated a life-cycle consistent model of the labor supply of married couples. They used data on couples where both the husband and wife work, and estimation is done jointly with a probit for whether the wife works (to control for selection into the sample). In Section V.B, I discussed their results for men, and here I turn to their results for women. In sharp contrast to Heckman and MaCurdy (1982) and Kimmel and Kniesner (1998), they obtain an (average) Frisch elasticity for women of only 0.033. The Hicks elasticity is 0.009. Based on the figures in their paper, I calculate an income effect of -.206 (at the mean of the data) and a Marshallian elasticity of -0.197. (Limitations of this paper, especially treating consumption as exogenous, were discussed earlier).

More recently, Blundell, Duncan and Meghir (1998) applied the life-cycle consistent approach to married women in the FES from 1978-92. UK tax rates fell substantially over the period, and the basic idea of the paper is to exploit this variation to help identify labor supply elasticities. As the authors describe, the decline in rates caused different cohorts to face different tax rate paths. Relative wages for different education groups also changed markedly.

The basic idea of the paper is as follows: Imagine we group the data by cohort and education level – i.e., for each education/cohort, construct group means of hours and wages in each year. Then subtract group and time means from these quantities. The key assumption in Blundell et al (1998) is that any residual variation in wages (after taking out group and time means) is exogenous. Their leading example of what might cause such residual variation in wages for a group is tax changes that affect the group differentially from other groups. [Another example is exogenous technical change that affects groups differently]. Their key assumption rules out labor supply shifts within any of the groups over time (e.g., tastes for leisure can vary by cohort or education, but not within an education/cohort group over time).

They also assume that taking out time means purges both hours and wages for all groups from the influence of aggregate shocks. This seems like a strong assumption, as time affects (like the business cycle) may well affect different education/skill groups differently. In this regard, see the earlier discussion of Angrist (1991) and Altug and Miller (1990).

The simplest way to think about using the grouped data is to regress the group mean
of hours on the group mean of wages, after purging these means of group and time effects. An equivalent approach is to use the individual data and proceed in two steps. First, regress after-tax wages on time/group interaction dummies, and obtain the residuals. Second, regress hours on the after-tax wage, time and group dummies, and the wage residual. Note: we want the wage coefficient to be identified by wage variation by group over time. The wage residual captures other sources of variation, as the first stage controls for time/group interactions.132

The authors also try to deal with compositional effects of changes in participation rates on the mean of the error term in the labor supply equation (e.g., a higher wage may induce women with higher tastes for leisure to enter the market). So they include an inverse Mills ratio term that is a function of the group/time participation rate, \(M(P_{gt})\). The labor supply equation that Blundell, Duncan and Meghir (1998) actually estimate has the form:

\[
(136) \quad h_{it} = \beta \ln w_{it}(1-\tau_{it}) + \gamma [C_{it} - w_{it}(1-\tau_{it})h_{it}] + X_{it}\phi + d_g + d_t + \delta_w R_{wit} + \delta_c R_{cit} + M(P_{gt}) + e_{it}
\]

The second term is virtual nonlabor income allocated to period \(t\) (see discussion of MaCurdy (1983) Method #2). \(X_{it}\) is a vector of demographics (i.e., dummies for children in various age ranges). \(d_g\) and \(d_t\) are the group and time dummies. \(R_{wit}\) and \(R_{cit}\) are residuals from first stage regressions of wages and virtual income on group/time interactions. And \(M(P_{gt})\) is a Mills ratio to control for participation rates. Estimation of (136) is by OLS. But, with the inclusion of \(R_{wit}\) and \(R_{cit}\), the procedure is equivalent to IV, with the group/time interactions as over-identifying instruments.133 The identifying assumption is that the main equation (136) does not contain group/time interactions (e.g., no group specific trends in tastes for work).

To implement this procedure Blundell et al (1998) group the FES into 2 education groups (legal minimum vs. additional education) and 4 cohorts (people born in '30-'39, '40-'49, '50-'59 and '60-'69) giving 8 groups. They screen the data to include only 20 to 50 year old women with employed husbands. This gives 24,626 women of whom 16,781 work. Only workers are used to estimate (136) while the full sample is used to form the \(M(P_{gt})\). One detail is that 2970 of these women are within a few hours of a kink point in the tax schedule. Blundell et al. drop these women from the data and construct additional Mills ratio terms to deal with the selection bias this creates. In the first stage they find the group/time interactions

132 An alternative computational approach to taking out group and time means is to regress the group mean of hours on the group mean of wages and a complete set of time and group dummies. Then the wage effect is identified purely from the wage variation not explained by aggregate time or group effects. The advantage of the more involved two-step procedure is that the coefficient on the residual provides a test of exogeneity of wages. 133 As I noted earlier, Blundell and Walker (1986) treated virtual income as exogenous. I questioned this on the grounds that, in the first stage of the two stage budgeting process, we might expect households to allocate more virtual income to periods when tastes for work are low. I should note, however, that Blundell et al. (1998) find that \(R_{it}\) is insignificant in (136), suggesting that endogeneity of virtual income may not be a problem.
are highly significant in the wage and virtual income equations.

The estimates of (136) imply an uncompensated wage elasticity at the mean of the data of 0.17 and a compensated elasticity of 0.20. In a sensitivity test, the Blundell at al. also report results where, in the first stage, the over-identifying instruments are 5 parameters that describe the tax rules interacted with group dummies. This reduces the number of instruments relative to the case where the group dummies were fully interacted with time dummies. It also means that only variation in wages and virtual income specifically induced by tax changes is used to identify the labor supply elasticities. The estimates give an uncompensated elasticity of 0.18 and an essentially zero income effect. Thus, results are little affected.

The paper by Moffitt (1984) departs from those reviewed so far in three key ways. First, it focuses only on the discrete participation decision, ignoring choice of hours. Second, it treats work and fertility choices as being made jointly, rather than treating fertility as exogenous. Third, wages are endogenous in that they depend on work experience. 1984 technology would have made fully structural estimation of such a complex model infeasible. Instead, Moffitt estimates an “approximate reduced form” of the structure outlined above. Thus, his work forms a link to the “full solution” approaches I discuss in the next section.

At the beginning of marriage, a couple plans the future path of the wife’s labor supply and fertility. The husband’s income stream, along with other sources of non-labor income, is taken as exogenously given (perfect foresight). The woman’s labor supply and fertility plans depend on this exogenous non-labor income stream \(Y\), along with her “permanent wage” or “skill endowment,” which she also knows with certainty. This is denoted \(w_i^*\) and given by:

\[
\ln w_i^* = Z_i \eta + \mu_{wi}
\]

where \(Z_i\) is a vector of observed determinants of initial skill (i.e., education, race, parents’ education) of woman \(i\), and \(\mu_{wi}\) is the unobserved part of the skill endowment. The structural model generates the following approximate decision rules for fertility \(B_{it}\) and work \(S_{it}\):

\[
B_{it}^* = a_0 + a_1 f(t) + a_2 \ln w_i^* + a_3 Y_i + a_4 X_i + a_5 B_{i,t-1} + \mu_{B_i} + u_{it}
\]

\[
S_{it}^* = b_0 + b_1 f(t) + b_2 \ln w_i^* + b_3 Y_i + b_4 X_i + b_5 B_{i,t-1} + \mu_{S_i} + u_{it}
\]

The woman chooses to have a child if the latent variable \(B_{it}^* > 0\), and to work if \(S_{it}^* > 0\). The parameters \(a_2\) and \(b_2\) determine how a woman’s skill endowment affects her probabilities of having children and working, respectively. Similarly, \(a_3\) and \(b_3\) determine the influence of the present value of exogenous non-labor income. Variables in \(X_i\) affect tastes for fertility/work
(i.e., education, race, birth cohort). a_1 and b_1 capture effects of marriage duration. Parameters a_0 and b_0 will capture fixed costs of work/fertility. Lagged births ($B_{i,t-1}$) affect current tastes and/or fixed costs (but lagged work does not). Finally, μ_{Bi} and μ_{Si} are permanent unobserved heterogeneity in tastes/fixed costs of fertility/work, while u_{it} and v_{it} are transitory shocks.

A key point is that the skill endowment $\ln w^*_it$ is not observed. Thus, Moffitt (1984) infers it from observed wages, using the wage function:

$$\ln w_{it} = \ln w^*_{it} + \gamma \sum_{\tau=1}^{t-1} S_{\tau} - \delta(t - 1) + \epsilon_{it} \quad \Rightarrow \quad \ln w_{it} = Z_i \eta + \gamma \sum_{\tau=1}^{t-1} S_{\tau} - \delta(t - 1) + \epsilon_{it} + \mu_{wi} + \epsilon_{it}$$

Here γ captures the effect of work experience and δ captures skill depreciation. The term ϵ_{it} is a stochastic shock to wages. Substituting the wage equation into the B^*_it and S^*_it equations we obtain the reduced form:

$$B^*_it = a_0 + a_1 f(t) + a_2 \left(Z_i \eta \right) + a_3 Y_i + a_4 X_i + a_5 B_{i,t-1} \left(a_2 \mu_{wi} + \mu_{Bi} + u_{it} \right)$$

$$S^*_it = b_0 + b_1 f(t) + b_2 \left(Z_i \eta \right) + b_3 Y_i + b_4 X_i + b_5 B_{i,t-1} \left(b_2 \mu_{wi} + \mu_{Si} + v_{it} \right)$$

Two key points are essential to note here. First, the transitory wage error ϵ_{it} is not included in these reduced form decision rules (Furthermore, u_{it} and v_{it} are assumed uncorrelated with ϵ_{it}). This can be rationalized in two ways: either (i) ϵ_{it} represents only measurement error, or (ii) work decisions are made before transitory wage draws are revealed. Either way, this means the results will not be informative about effects of transitory wage changes on labor supply.

Second, identification of permanent wage effects on labor supply/fertility (b_2 and a_2) requires Z_i to contain at least one variable that does not affect tastes (X_i). Playing this role are parent education and year-of-marriage, the latter to capture productivity growth over time.\(^{134}\)

Moffitt (1984) estimates the wage equation jointly with the reduced form decision rules for fertility and work via maximum likelihood (assuming errors are normal). Note that the unobserved skill endowments μ_{wi}, which are treated as random effects, enter all three equations. Thus, joint estimation corrects for (i) selection bias and (ii) endogeneity of work experience in the wage equation, both of which arise because those with higher μ_{wi} are more likely to work (accumulating more work experience) and to have observed wages.\(^{135}\)

\(^{134}\) Note that cohort enters X_i while year-of-marriage enters Z_i. This restriction is debatable – it seems at least as natural to use birth cohort to capture productivity change as year-of-marriage. Also, the two variables are presumably highly correlated. Thus, I expect it is the parent education variables that primarily identify a_2 and b_2.

\(^{135}\) This approach is only valid if the transitory wage errors do not influence labor supply decisions. Otherwise it would be necessary to also accommodate correlation between ϵ_{it} and u_{it} and v_{it}. The only two correlations allowed are between μ_{Bi} and μ_{Si} and between u_{it} and v_{it} – the errors in the fertility and work equations.
Mofitt (1984) estimates the model using married women from the NLS Young Women sample who were 14-24 in 1968. The sample covers the years 1968-75. Simulations of his estimated model imply that the long run (uncompensated) elasticity of life-cycle labor supply with respect to a permanent wage increase is 1.25. The elasticity for fertility is -0.25. It is important to note that the labor supply elasticity reported here differs from those reported earlier: it is a “long run” response that accounts for how the wage change alters the fertility. This key point will come into play in many of the models discussed in the next section.

VI.A. Female Labor Supply – Full Solution Methods

The first paper to adopt a full solution approach to modeling female labor supply was Eckstein and Wolpin (1989). Indeed, it is the first paper to model labor supply of any group using a discrete choice dynamic programming (DCDP) approach (provided we maintain a distinction between labor supply models and job search models such as Wolpin (1987)). The paper looks at work decisions by married women in the NLS Mature Women’s cohort.

The main focus of the paper is on how the decision to work today affects wages and tastes for work in the future. Thus, it considers three of the four issues that I stated at the outset were central to the female labor supply literature: (i) participation decisions and how they are influenced by fixed costs, (ii) human capital, and (iii) state dependence in tastes for work. In order to make estimation feasible (particularly given 1989 technology) Eckstein and Wolpin (1989) make some key simplifying assumptions. First, they ignore saving and assume a static budget constraint. Second, they ignore the choice of hours of work and treat labor supply as a discrete work/no-work decision.

This set of decisions is notable, as it illustrates well the different paths the male and female life-cycle labor supply literatures have taken. The literature on males has emphasized decisions about hours and savings, which Eckstein and Wolpin (1989) ignore. But work on males has usually ignored participation, human capital and state dependence, which Eckstein and Wolpin (1989) stress. This is not a value judgment on either literature, but simply an observation about what aspects of behavior researchers have found it most essential to model in each case. The emphasis on participation, human capital and state dependence explains why the female literature came to use DCDP methods several years earlier than the male literature, as these features are difficult to handle using Euler equation methods.

A third key simplifying assumption is that Eckstein and Wolpin (1989) do not model marriage or fertility. To avoid having to model fertility decisions, the paper looks only at 136 The fourth issue, which is not yet addressed here, is the attempt to treat marriage and fertility as endogenous. Eckstein and Wolpin (1989) take them as exogenously given.
women who were at least 39 years old in 1967 (and so for the most part past child bearing age). The number of children affects fixed costs of work, but it is treated as predetermined. And marriage is taken as exogenously given. Including marriage and fertility as additional choice variables would not have been feasible given 1989 technology. But, as we’ll see, incorporating them as choice variables has been the main thrust of the subsequent literature.

Eckstein and Wolpin (1989) assume a utility function of the form:

\[
U_t = C_t + \alpha_1 p_t + \alpha_2 C_{t-1} p_t + \alpha_3 X_t p_t + \alpha_4 N_t p_t + \alpha_5 S_t p_t
\]

Here \(p_t\) is an indicator of labor force participation, \(X_t\) is work experience (a sum of lagged \(p_t\)), \(N_t\) is a vector of children in different age ranges, and \(S_t\) is schooling. The budget constraint is:

\[
C_t = w_t p_t + Y_t^{H} - cN_t - bp_t
\]

where \(w_t\) now stands for the potential earnings of the wife and \(Y_t^{H}\) is the annual income of the husband (assumed exogenous).\(^{137}\) That utility is linear in consumption has some important consequences. First, substitution of (138) into (137) makes clear that we cannot separately identify fixed costs of work \(b\) and monetary costs of children \(c\) from the disutility of work \(\alpha_1\) or effects of children on the disutility of work \(\alpha_4\). So Eckstein and Wolpin normalize \(b=c=0\).

The second implication is that the model will not exhibit income effects on labor supply unless consumption and participation interact in (137). For instance, if \(\alpha_2 = 0\) then husband’s income will have no impact on the wife’s labor supply. But a clear pattern in the data is that women with higher income husbands work less (see, e.g., Mincer (1962)). For the model to capture this, we must have \(\alpha_2 < 0\). This implies consumption and leisure are compliments in utility. This illustrates a limitation of the model, as a negative income effect and consumption/leisure complimentarity are conceptually distinct phenomena.

Eckstein and Wolpin (1989) assume a Mincer-type log earnings function (linear in schooling, quadratic in work experience), with both a stochastic productivity shock and measurement error. These are the only stochastic terms in the model, as there are no shocks to tastes for work. This simplifies the solution to the dynamic programming problem.\(^{138}\) The solution takes the form of a set of reservation wages (which are a deterministic function of age, experience and other state variables). The decision rule for participation is to work if the

\(^{137}\) Annual earnings if the woman works are assumed to equal 2000 times the hourly wage rate, regardless of how many hours the woman actually works. This is necessitated by the 1/0 nature of the work decision.

\(^{138}\) Eckstein and Wolpin (1989) also assume that husband earnings is a deterministic function of husband age, a fixed effect, and a schooling/age interaction. If there were taste shocks or shocks to husband earnings they would have to be integrated out in solving the DP problem.
offer wage exceeds the reservation wage. Measurement error accounts for cases where women are observed to make decisions that violate this condition.

Eckstein and Wolpin (1989) estimate the model by maximum likelihood using data on 318 white married women from the NLS Mature Women’s cohort. The NLS interviewed them 11 times in the 16 years from 1967 to 1982, making it difficult to construct complete employment histories for all women. To be in the sample a woman had to have at least four consecutive valid years of data on labor force participation, and have a spouse present in every interview from 1967 to 1982. The data set contained 3020 total observations, 53% of which were for working years. The discount factor is fixed at 0.952.

One interesting aspect of the estimates is they show substantial selection bias in OLS wage equation estimates. The OLS schooling coefficient is 0.08 while the model estimate is 0.05. The experience profile is initially less steep but also less strongly concave than implied by OLS. The estimates imply that 85% of observed wage variation is measurement error.¹³⁹

As expected, Eckstein and Wolpin find that children (especially young children) have a negative effect on tastes for work. State dependence is imprecisely estimated, but it implies experience reduces tastes for work. Schooling reduces tastes for work as well. However, both effects are heavily outweighed by positive effects of experience and schooling on wages.

Eckstein and Wolpin also find $\alpha_2 < 0$, so husband income reduces the wife’s work. Consider a woman at age 39 with 15 years of work experience, 12 years of schooling, no children and a husband with $10,000 in annual earnings (which is close to the mean in the data). The baseline prediction of the model is that she will work 5.9 years out of the 21 years through age 59, or 28% of the time. If his earnings increase 50%, the model predicts her participation rate will drop to 14%, a 50% decrease. So the elasticity of the participation rate with respect to non-labor income is roughly -1.0. Converting this to an income effect, and noting that the mean wage in the data is $2.27 per hour and that work is assumed to be 2000 hours per year, we obtain

$$ie = (wh/I)e_I = [(2.27)(2000)/10,000](-1) = -0.45.$$ ¹³⁹

Unfortunately, Eckstein and Wolpin (1989) do simulate how an exogenous change in the wage rate (due to a shift in the rental rate or tax rate) affects labor supply. However, as schooling is exogenous, and the effect of school on tastes for work is very small, we can approximate this using the schooling coefficient. Consider the same representative woman described above, and assume her education level is increased from 12 to 16. An extra 4 years of schooling raises the wage rate roughly 22% at the mean of the data. The Eckstein-Wolpin

Note that the measurement error in wages cannot be estimated using wage data alone in the absence of multiple measures. But joint estimation of a wage equation and a labor supply model does allow measurement error to estimated, as true wage variation affects behavior while measurement error does not. Of course, any estimate of the extent of measurement error so obtained will be contingent on the behavioral model.
model predicts this will increase her participation rate from age 39 to 59 by 108%. Thus, the (uncompensated) elasticity of the participation rate with respect to the wage is roughly 5.0.

Finally, Eckstein and Wolpin (1989) report a detailed description of how their model fits labor force participation rates, conditional on 28 experience/age cells (see their Table 5). In general the model provides a very good fit to the data. As I noted earlier, there are very few papers in the static literature, or the literature on dynamic models based on first order conditions, that examine model fit. In contrast, as we will see below, since Eckstein and Wolpin (1989), careful examination of model fit has become standard practice in the DCDP literature. This situation has presumably arisen because the focus of the former literatures is estimation of parameters or elasticities, while the focus of the DCDP literature is on model simulations under baseline vs. policy change scenarios. It is only natural to compare baseline simulations to the actual data. But clearly it should be standard practice to assess model fit in all econometric models (including static models, reduced form models, etc.).

The next paper in the DCDP literature on female labor supply did not appear until van der Klaauw (1996). He extends Eckstein and Wolpin (1989) to make marriage a choice. This means women have up to 4 options in each period, given by the cross product of work and marriage choices. One key difference is that van der Klaauw (1996) models decisions starting from when a woman left school, which may be as young as 14. So obviously he cannot treat fertility as given. Thus, he models the arrival of children as a stochastic process, where arrival probabilities depend on state variables (i.e., marital status, age, race and education). This is a common procedure in DCDP modeling – i.e., to take variables one believes are endogenous, but which one does not wish to model explicitly as a choice (either for computational reasons or because they are not the main focus of the analysis), and treat them as being generated by a stochastic process that depends on the state variables.

The model is in many ways similar to Eckstein and Wolpin (1989). There is again a static budget constraint, with utility linear in consumption. Utility conditional on participation and marriage \((p_s, m_i)\) is given by:

\[
U_{pm,t} = a_{1t} m_i + (a_{2t} + a_{3t} m_i) p_t + (\beta_1 + \beta_2 p_t + \beta_3 m_t) C_{pm,t} + \epsilon_{pm,t}
\]

Note that consumption is interacted with participation, as in Eckstein and Wolpin (1989), to enable the model to explain why women work less if they have high income husbands. Tastes

140 As noted earlier, the only exceptions I have found in the static literature are Cogan (1981), van Soest, Woittiez and Kapteyn (1990), and Keane and Moffitt (1998). In the literature on dynamic models based on first order conditions, it is not possible to examine model fit, as one cannot simulate data from the model.

141 This procedure does have limitations. For instance, in this model an exceptionally good wage draw for the woman (or an exceptional bad wage draw for her husband) could not induce a woman to delay childbearing.
for marriage a_1, are allowed to depend on demographics, children and lagged marriage. Marriage (m_t) is also interacted with consumption, thus letting marriage shift the marginal utility of consumption. The effects of demographics, children and lagged participation on tastes for work are captured by letting a_2 and a_3, depend on these variables.

Recall that in Eckstein and Wolpin (1989) a woman got utility from total household consumption. Here, she consumes her own income plus a fraction of the husband’s income (depending on her work status), so she gets utility from private consumption. A single woman has a probability of receiving a marriage offer each year. A potential husband is characterized only by his mean wage, which depends on the woman’s characteristics (reflecting marriage market equilibrium), a transitory wage draw, and transitory shocks to utility of the married states (i.e., $e_{pm,t}$ for $m=1$). The latter capture any non-pecuniary aspects of the marriage offer.

It is worth noting that this is only a search model of marriage in a trivial sense. There is no match-specific component to the marriage; a husband does not come with a permanent component to his earnings level, which could make him a “good draw” given the woman’s demographics. Nor is there any permanent component to the utility level he provides. Thus, the woman has no reason to decline a marriage offer in the hope of a better offer. Her only reasons for delay are (i) mean husband income is assumed to be increasing with the woman’s age, and (ii) the transitory aspects of offers vary over time. This setup substantially reduces the computational burden of estimation, as there is no “husband type” variable that must be included in the state space. But at the same time it renders the model rather uninformative for assessing the effect of permanent differences in husband income on the wife’s labor supply, as all permanent differences are a deterministic function of the wife’s own characteristics.

The woman’s own wage offer function includes standard covariates like education, a quadratic in experience, race, age and region. It also includes a lagged participation indicator, which lets more recent work experience be more important (see Altug and Miller (1998)). An unusual aspect of the specification, however, is that it is specified in levels, with an additive error. This is also true of the husband’s wage function. Given this setup, when these functions are substituted into the budget constraint to get the choice (p_t, m_t)-specific consumption level, $C_{pm,t}$, and this in turn is substituted into the utility function (139), each of the 4 alternatives has an additive error that consists of the $e_{pm,t}$ plus a function of the female and male wage equations errors. I’ll denote these 4 composite errors as $e_{pm,t}$ for $p=0,1$, $m=0,1$.

From a computational point of view, the key aspect of van der Klaauw (1996), which is what enables him to handle the complexity of making marriage a choice, is that he assumes the four additive choice-specific errors are distributed iid extreme value. This enables him to
adopt Rust’s (1984) closed form solution method, which makes solving the DP problem and forming choice probabilities much faster. The extreme value assumption is hard to evaluate. There is substantial evidence suggesting that wage errors are approximately log normal. But we have little to go on when deciding on an appropriate distribution for taste shocks – or, in this case, sums of taste and wage shocks. What does appear very strong is the within period iid assumption: The $e_{pm,t}$ for $p=0,1$ and $m=1$ contain common husband income shocks and common taste for marriage draws, and the $e_{pm,t}$ for $m=0,1$ and $p=1$ contain common shocks to the wife’s wage and tastes for work. So we would expect the 4 errors to be correlated.\footnote{An idea that might prove useful here is the generalized extreme value distribution (see Arcidiacono (2008)).}

The model is estimated on PSID data from 1968 to 1985. The sample includes 548 females aged 12 to 19 in 1968, so that complete work and marital histories can be constructed (avoiding the initial conditions problem that would arise for women who were older in 1968). The women are 29 to 36 by the end of the sample period. The terminal period is set at age 45 to reduce computational burden. As the discount factor is set at 0.85, this may be innocuous (e.g., if a person leaves school at age 22 then the number of periods is $45-22=23$ and $(.85)^{23}=0.024$). It is assumed that $p=1$ if the woman worked at least 775 hours in a year, but, as in Eckstein and Wolpin (1989), the work choice is assumed to entail 2000 hours regardless of actual hours. This approximation is necessitated by the discrete nature of the work decision.

The model is estimated in stages. In the first stage the “reduced form” model (with the wage equations substituted into (139)) is estimated via Rust (1984)’s method. In the second stage the wage equations are estimated using employment and marriage decision rules from the reduced form model to implement a selection correction. In the third stage a minimum distance estimator (see Chamberlain (1984)) is used to uncover the structural parameters. All reported model simulations are for the “reduced form” model.

The wage equation estimates are a bit difficult to compare to prior literature as they are in levels. For instance, they imply that a year of schooling raises a woman’s earnings by $1,379 per year. As mean earnings in the data are $13,698 per year, this is roughly 10% at the mean of the data. A year of schooling also raises potential husband’s earnings by $1,266 per year (vs. a mean of $19,800) or 6.4%. This suggests that an important part of the return to schooling for women comes through the marriage market.\footnote{The estimates imply that a married woman who works receives 34% of husband income. Unfortunately, the share if she does not work is not identified. As we see from (139), if a married woman does not work her utility from consumption is $(\bar{\beta}_1+\bar{\beta}_3)$ times her share of husband income. Only this product is identified in the model.} The utility function estimates imply that children reduce the utility from participation while lagged work increases it.
Van der Klaauw (1996) presents a substantial amount of evidence on the fit of the model. It provides a good fit to the proportion of women who are working and who are married conditional on years since leaving school, to marriage rates by age, and to the hazard functions for marriage and divorce. It also provides a good fit to the proportion of women making each of the 4 marital status/work choices conditional on work experience and age.

Van der Klaauw (1996) then uses the model to simulate the impact of exogenous $1,000 increases in annual offer wages and husband offer wages. The $1,000 wage increase leads to a 26% (i.e., 2.5 year) increase in work experience by age 35. As this is a 7.3% wage increase, this implies an uncompensated labor supply elasticity of roughly 3.6. It is notable, however, that this elasticity is not comparable to a conventional Marshallian elasticity that holds all else fixed. In particular, the wage increase causes a 1 year increase in average years to first marriage, and a 1.3 year decrease in average total years of marriage. The reduction in marriage is part of what induces the increase in labor supply.144

There is another large time gap until the next significant paper in the DCDP literature on female labor supply, which is Francesconi (2002). In contrast to van der Klaauw (1996), he extends Eckstein and Wolpin (1989) to make fertility a choice. He also allows for both full-time and part-time work. Thus, women thus have 6 choices in each annual period (after age 40 only the 3 work options are available). Francesconi (2002) also allows full and part-time experience to have separate effects on offer wages.145 Thus, the model has three endogenous state variables: number of children, and part-time and full-time experience.

Marriage is taken to be exogenous and the model begins when a woman first gets married. The terminal period is age 65. Women are assumed to make decisions based on expected husband income. As in Eckstein and Wolpin (1989), women get utility from total household consumption, net of fixed costs of work and costs of children. There is again a static budget constraint, with utility linear in consumption. Utility conditional on the part-time and full-time work and fertility choices \((p_t, f_t, n_t)\) is given by:

\[
U_{pfn,t} = C_{pfn,t} + a_1 p_t + a_2 f_t + (a_3 + e_t^n)(n_t + N_{t-1}) + a_4(n_t + N_{t-1})^2 + \{\beta_1 p_t C_{pfn,t} + \beta_2 f_t C_{pfn,t} + \beta_3 n_t C_{pfn,t}\} + \{\beta_4 p_t n_t + \beta_5 f_t n_t\}
\]

144 Van der Klaauw (1996) simulates that a $1000 (5\%) increase in husband offer wages reduces mean duration to first marriage by 1 year, increases average years of marriage (by age 35) by 2.3 years, and reduces average years of work by 2.6 years (27\%). These are very large income effects, but they are not comparable to standard income effect measures, as they refer to changes in husband offer wages, not actual husband wages. Also, it is not clear how much credence to give to these figures: as noted earlier, all permanent differences in husband income in the model are generated by differences in the wife’s own characteristics.

145 There are also separate full and part-time wage functions.
Tastes for part and full-time work, a_{1t} and a_{2t}, are a function of children, work experience and schooling. Tastes for children ($N_t = N_{t-1} + n_t$) depend on the stochastic term ϵ_t^n. In the first term in curly brackets, consumption is interacted with all the choice variables (p_t, f_t, n_t). This allows husband income to affect work and fertility decisions. In the second term in curly brackets, work and fertility decisions are interacted. This enables the model to capture the fact that newborn children greatly reduce workforce participation.

The stochastic terms in the model are in the full and part-time wage equations and in tastes for children. There are no shocks to tastes for work. Thus, as in Eckstein and Wolpin (1989), it is assumed wages are measured with error to account for observations where women work at wages below the reservation wage. Given that the model contains 6 choices and three stochastic terms, the evaluation of the Emax function integrals is difficult. Thus, Francesconi (2002) uses a simulation method like that proposed in Keane and Wolpin (1994) to approximate the Emax functions. However, the state space is small enough that he can simulate the Emax function at every state point (there is no need to interpolate between points). The three dimensional choice probability integrals are also simulated.

A point worth stressing is that Francesconi (2002) assumes that only the number of children, and not their ages, enters the state space. If children of different ages had different effects on labor supply, the size of the state space would grow astronomically. Francesconi can accommodate that newborns have a different effect on labor supply than older children, because newborns are treated as a current choice variable. Thus, they do not enter the state, as they are no longer newborns in the next period. But allowing, e.g., children aged 1 to 5 to have a different effect than children aged 6-17 would lead to a great increase in complexity.

Francesconi (2002) also follows van der Klaauw (1996) by assuming mean income of the husband is purely a function of a woman’s characteristics (i.e., age at marriage, education, age). This reduces the size of the state space, as no husband specific characteristic (e.g., a husband skill endowment) need be included in the state vector. But, as a result, effects of husband income on the wife’s behavior can only be identified to the extent we invoke some exclusion restrictions, such that certain characteristics of the wife affect only the husband wage and not the wage or tastes of the wife. In fact, the husband wage function includes the wife’s age, age at marriage and education/age of marriage interactions, and all of these variables are excluded from the wife’s wage function and from her taste parameters.

Finally, Francesconi (2002) extends earlier DCDP models of female labor supply by following the procedure in Keane and Wolpin (1997) to allow for unobserved heterogeneity.
Specifically, he allows for three discrete types of women in terms of their skill endowments (the intercepts in the offer wage functions) and in tastes for children (a_3 and a_4).

The model is estimated on 765 white women from the NLS Young Women Survey who were interviewed 16 times (in 24 years) from 1968-91. To be included in the sample a woman must be at least 19 and be married to the same spouse for the whole sample period.\footnote{This is a sub-sample of a group of 1,783 women who were married at least once during the period.} Part-time is defined as 500 to 1,500 hours and full-time is defined as 1,500+ hours. The discount factor is fixed at 0.952. Unlike the multi-step procedure in van der Klaauw (1996), decision rules and wage functions are estimated jointly, and wage errors are log normal.

The estimates of the wage function imply a year of schooling raises the full-time offer wage by 8.4\% and the part-time offer wage by 7.6\% (intermediate between the Eckstein and Wolpin (1989) and van der Klaauw (1996) results). Full-time experience has a large positive effect on full-time offer wages, while part-time experience has a much smaller effect. Effects of experience on part-time wages are generally much smaller. Measurement error accounts for about 63\% of the variance of observed wages. Evaluated at the mean of the data, an extra year of school raises mean husband wages by 11\%. This is consistent with the finding of van der Klaauw (1996) that a large part of the return to schooling for women comes through the labor market. The interaction terms between consumption and work and fertility ($\beta_1, \beta_2, \beta_3$) are all negative. This generates negative income effects on both labor supply and fertility. In addition, the type with a high skill endowment also has relative low tastes for children.

Francesconi (2002) shows the model provides a good fit to all 6 annual choice options up to 24 years after marriage (which corresponds to age 47 on average). This is where the observed data ends. He also fits a static model (i.e., discount factor set to 0) and finds that it too provides a good fit to the in-sample data. But the models differ dramatically in their out-of-sample predictions. The static model predicts women’s labor supply will increase sharply after about age 47 and into the 60s. The DCDP model implies work will stay flat and then drop slowly in the 60s. The latter prediction is much closer to what we observe in the CPS.\footnote{Neither model captures the sharp decline in participation in the 60s due to retirement. But to be fair neither model incorporates any features designed to explain retirement behavior (such as pensions or Social Security).} The problem with the static model is that it explains low participation rates as resulting from the presence of children, so when children leave participation rises sharply. The dynamic model is able to counteract this effect with a declining return to human capital investment as one approaches the terminal period (see the earlier discussion of Imai and Keane (2004)).

Finally, Francesconi (2002) conducts a number of simulations of how permanent changes in wages would affect labor supply. For example, consider an average woman with 2
years of full-time work experience at the time of marriage. The baseline simulation of the model is that she will work for 6.8 out of the 11 years from age 30 to 40. Now consider an increase in the log wage function intercept (i.e., in the rental price of skill), that would increase offer wages at the mean of the data by roughly 10.5%. This would increase full-time work by roughly 60%, implying an elasticity of labor supply with respect to rental price of skill of roughly 5.6. Note however that this is somewhat of an exaggeration, as some of the increase in full-time must come from reduced part-time work. Unfortunately Francesconi (2002) does not report the drop in part-time work that accompanies this experiment.

The last two papers I discuss are Keane and Wolpin (2007, 2009). In these papers Keane and Wolpin utilize approximate solution methods developed in Keane and Wolpin (1994), and estimation methods developed in Keane and Wolpin (2001), to estimate a model of female life-cycle behavior that is considerably richer than previous models in the literature. Both marriage and fertility are treated as choices, and both full and part-time work options are available. Schooling is also a choice. An important feature of the data not accommodated in prior dynamic models is that many single women with children participate in welfare programs. Thus, welfare participation (when eligible) is also incorporated as a choice.

In the model, women begin making decisions at age 14, and the terminal period is age 65. The fertile period is assumed to last until age 45. During this period women have up to 36 choice options in each period. Afterwards they have up to 18 options. The decision period is assumed to be 6-months up until age 45. This is a compromise between the length of a school semester and the child gestation period. After age 45 the decision period is one year (as the fraction of women who either attend school or have children after 45 is negligible).

Given that behavior of children as young as 14 is being modeled, it is essential to consider the role of parental co-residence and parental income support. Yet, as this is not a focal point of the model, the authors do not treat living with parents as a choice. Instead, consistent with practices we have discussed earlier, both the probability of co-residence and parental transfers are treated as stochastic processes that depend on a person’s state variables.

One fundamental difference from van der Klaauw (1996) and Francesconi (2002) is that marriage is a true search process. Each period a woman may receive a marriage offer that consists of: (1) the mean wage of the husband, and (2) a taste for marriage draw (which captures non-pecuniary aspects of the match). The mean wage of the potential husband is

148 The choice set differs across women for several reasons. For instance, only unmarried women with children under 18 can participate in welfare, and working while on welfare is not an option if the offer wage rate is high enough that income would exceed the eligibility level. Also, girls under 16 cannot choose marriage.
drawn from a *distribution* that depends on a woman’s characteristics, such as her schooling and skill level. But the distribution may produce either a good or a bad draw, and the husband specific mean remains fixed for the duration of the marriage if an offer is accepted. Thus, a husband fixed effect becomes part of the state space. In this setup, a woman has an incentive to reject marriage offers while waiting for a husband with a high mean wage.

Another fundamental difference from prior work is the model is non-stationary. This is because welfare rules change over time, and differ by State. So each cohort of women (as defined by the semi-annual period in which they reach age 14) in each State faces a different sequence of welfare rules. This creates a number of computational problems. First, each cohort of women in each State faces a different dynamic optimization problem (raising computational burden). Second, one must make an assumption about how women forecast future rules. Third, the rules are very complex, making it difficult to characterize them.

Keane and Wolpin (2007, 2009) deal with these problems as follows: First, they develop a simple 5 parameter function that characterizes the welfare benefit rules in each State in each year quite accurately. Second, they assume women use a State-specific (vector auto-regression) VAR in these 5 parameters to predict future rules. Third, they only use data from 5 large States, so as to reduce the number of DP problems that must be solved in estimation. This enables them to use other States for out-of-sample validation.

Keane and Wolpin (2007, 2009) assume a woman receives disutility from a variable that measures “non leisure” time (h_t). This is a sum of work hours, a fixed time cost of work, time spent in school, time required to collect welfare, and time needed to care for children. The authors estimate weights on the variables other than work hours, so as to allow other time uses to entail more/less disutility than time spent working. A woman’s consumption is a share of total (net) household income. Utility is quadratic in h_t and linear in consumption. Similar to the papers discussed earlier, consumption is interacted with h_t. The estimated coefficient is negative, implying that consumption and leisure are compliments. This induces negative income effects on labor supply and fertility.

Keane and Wolpin (2007, 2009) introduce additional interactions that allow marriage and children to shift the degree of complimentarity between consumption and leisure. This would have been irrelevant in the papers discussed previously, as they do model labor supply, marriage and fertility choices jointly. The estimates imply marriage and children both reduce the degree of complimentarity between consumption and leisure, but do not eliminate it.

149 Childcare time is, in turn, is a weighted sum of time required to care for children in different age ranges.
Women also receive utility/disutility from children, pregnancy, marriage, school and welfare participation. Utility is quadratic in number of children. The utility/disutility from pregnancy is a polynomial in age. As one would expect, this becomes a large negative for women as they approach 45, consistent with the greater risks of pregnancy at older ages. The disutility of welfare attendance enables the model to explain non-participation by eligible women (see Moffitt (1983)). The utility function coefficient on each of the 5 choice variables (hours, pregnancy, marriage, school and welfare) consists of a constant plus a stochastic taste shock. This enables the model to generate a non-zero probability for any observed choice.

The model allows for unobserved heterogeneity in the form of 6 types of women who have different vectors of constants on the 5 choice variables (different tastes), and different intercepts in the wage functions (different skills). The model includes observed heterogeneity as well: the skill/taste parameters are allowed to differ across States and ethnic groups (blacks, whites, Hispanics). Finally, the utility function includes interactions of full and part-time work, school, marriage and welfare participation with lagged values of these variables, to capture state dependence in tastes for these choice options.150

The model is estimated on data from the NLSY79, which contains women aged 14 to 21 in 1979. The data span the years 1979-91, so the women reach a maximum age of 33. The States used in estimation are California, Michigan, New York, North Carolina and Ohio. To be included in the sample a woman had to reside in the same State for the whole sample period, which screens out about 30%. This leaves data on approximately 2800 women.151 The annual discount factor is fixed at 0.93.

Estimates of the log wage function imply that (at the mean of the data) an extra year of school raises wages by 9.1%. And 84% of the variance of wages is due to measurement error (the true log wage standard deviation is 0.17). The experience coefficients imply that the first year of full-time work raises wages by 2.6%, and the experience profile peaks at 36 years. Lagged full-time work raises the current offer wage by 7%; lagged part-time raises it by 3%. Blacks and Hispanics have lower offers than whites (by 13% and 6%, respectively).

In the husband offer wage function, the coefficient on the woman’s skill endowment (i.e., intercept in the woman’s wage function) is 1.95, implying a high degree of assortative

150 The utility function includes miscellaneous additional terms added to capture various detailed features of the data. Full and part-time work are interacted with school to capture that people who work while in school tend to prefer part-time over full-time work. Work variables are interacted with a school less than 12 dummy to capture that part-time work is far more prevalent in high school. Pregnancy is interacted with school to capture that women rarely go to school while pregnant. Tastes for school, marriage and pregnancy are also allowed to shift at certain key ages (16, 18 and 21). And there is a linear time trend (across cohorts) in tastes for marriage.

151 Keane and Wolpin (2002) provide a more detailed description of these data.
mating. Each additional year of education for the woman raises the husband offer wage by 3%. Black and Hispanic women have much lower husband offer wages than whites (by 30% and 14%, respectively). The estimates imply that women receive 55% of total household income. So, just as in van der Klaauw (1996) and Francesconi (2002), much of the return to schooling appears to emerge through the marriage market.

Estimates of the utility function parameters are interesting in that they show no significant differences in tastes for leisure, school or welfare participation between black, white and Hispanic women. But black and Hispanic women do get more utility from children. And black (Hispanic) women get less (more) utility from marriage. There is clear evidence of state dependence in tastes for school, part-time work and full-time work.

Keane and Wolpin (2007) provide a good deal of evidence on the fit of the model, and assess how well it predicts behavior in the holdout state of Texas. The model performs rather well in these tests, including providing better predictions than some alternative reduced-form models. Keane and Wolpin (2009) use the model for a variety of policy experiments. These focus on: (1) factors accounting for differences among blacks, whites and Hispanics in choice behavior, (2) effects of changing welfare rules, and (3) effects changing offer wages. Here I focus on the labor supply simulations. For instance, for women in the 22.5 to 25.5 age range, a 5% increase in the skill rental price causes average weekly hours to increase by 14%, from 25.8 hours to 29.4 hours. This implies a labor supply elasticity of roughly 2.8.

Recall that the model has six types of women, which we can rank order by skill level from type 1s (highest skill endowment) to types 6s (lowest). Type 6s account for the majority of welfare participants. Keane and Wolpin (2009) report experiments where they increase the offer wage by 5% for each type separately. The wage elasticities are inversely proportional to skill level, ranging from only 0.6 for type 1s to 9.2 for type 6s. Thus, the overall elasticity of 2.8 is deceptive with regard to behavior of various subsets of the population.

For type 6 women, the 5% wage increase has a dramatic impact on many aspects of behavior. For instance, for whites of type 6, the percent working at ages 22 to 29.5 increases from 34% to 50% (a 47% increase). But also notable is that mean schooling increases from 11.5 to 12 years, the high school drop out rate drops from 42% to 24%, welfare participation drops from 25% to 20%, and incidence of out-of-wedlock teenage births drops from 3.4% to 2.8%. All these behavioral changes (more education, fewer teenage pregnancies, less welfare participation) contribute to the increase in labor supply. In contrast, type 1s already complete a high level of schooling, rarely have children at young ages, do not participating in welfare, and participate in the labor market at a high rate. Thus, there are fewer ways that a wage
increase can affect them. In summary, these results indicate that wage elasticities of labor supply for low skilled women are much greater than for high skilled women.

VI.B. Summary of the Female Labor Supply Literature

A problem arises in summarizing labor supply elasticity estimates for women because the nature of the elasticities being estimated differ across studies. In particular, several studies that I have discussed calculate what might called “short run” elasticities that hold work experience, marriage and fertility fixed. But Moffitt (1984) and the DCDP models calculate “long run” elasticities that allow, depending on the study, some combination of experience, fertility, marriage and education to adjust to wage changes. Nevertheless, Table 8 attempts to provide a summary of the elasticity estimates I have discussed.

A reasonable assessment of Table 8 is that the labor supply elasticity estimates for women are generally quite large. DCDP models give uniformly large “long run” elasticities ranging from 2.8 to 5.6. The life-cycle models of Heckman and Macurdy (1982) and Kimmel and Knesner (1998) give large Frisch elasticities (2.35 to 3.05). The Marshallian elasticity of 0.89 obtained by Cogan (1981) in a static model is also quite large. Note this is an elasticity for hours conditional on working. It is unfortunate that Cogan does not report a participation elasticity, as, given his estimates, this would presumably have been much larger. Thus, 8 of the 10 listed studies obtain large female labor supply elasticities (of various types). Only the Blundell and Walker (1986) and Blundell, Duncan and Meghir (1998) studies find generally small elasticities. This may be because these studies consider the labor supply response of working women to wage changes, while the other 8 studies incorporate participation choices.

In summary, we see the female labor supply literature has emphasized participation, human capital, fertility and marriage. Papers that have attempted to model fertility and/or marriage as choices have ignored savings choices so as to achieve computational tractability. There is as of yet no model of female life-cycle behavior that includes savings along with human capital, fertility and marriage. This is an important avenue for future research, but a difficult one, as it is not clear how to sensibly model savings outside of a household context.

My survey of the female labor supply literature has been narrower than that for men, in large part because I share with Mincer (1962) the view that it is difficult to sensibly think about labor supply of women without adopting a life-cycle perspective. Also, in the interest of space I have largely ignored the literature on effects of welfare programs on labor supply of single mothers (see, e.g., Moffitt (1983, 1992), Keane and Moffitt (1998)) – except where welfare is integrated into a life-cycle framework (Keane and Wolpin (2007)). This omission is in spite of the fact that single mothers may be the group for whom static models are most
useful: they are likely liquidity constrained and have small returns to work experience. But the work on labor supply of single mothers has emphasized a set of methodological issues different from those in either the male of married female literatures, and to do it justice would require another section (see Moffitt (1992) and Blundell and MaCurdy (1999)).

VII. Overall Summary

The studies that I have reviewed suggest that labor supply may well be more elastic than conventional wisdom suggests. For example, for men, when I simply average the Hicks elasticity across 21 well-known studies, I obtain a value of 0.30. A number of simulation studies have shown that such a value is quite sufficient to induce substantial welfare losses from income taxation. Furthermore, if one were to weight those estimates by features I have argued are desirable, such as (i) the use of direct rather than ratio wage measures (to avoid denominator bias), or (ii) accounting for human capital, one would shift towards a larger value for the Hicks elasticity.

With regard to women, the majority of studies I examine find labor supply much more elastic than for men. This is particularly true if one considers models that calculate “long run” elasticities. By this I mean that some combination of work experience, fertility, marriage and education are allowed to adjust to wage changes, rather than being assumed exogenous. Across 5 studies I examined, these long-run elasticities average 3.6.

In this survey I have sought to avoid bias toward any particular methodological perspective. For instance, I have provided extensive discussion of both static and “life-cycle consistent” labor supply models, even though I have a personal bias towards “full solution” methods. But one bias in the survey is notable. That is, given the existence of many hundreds of papers on labor supply, I have generally chosen to review papers that: (i) pushed the methodological frontier in some way, (ii) are very well-known/influential, or (iii) both. Of course this is a small subset of the whole universe of papers on labor supply. An interesting (but difficult) question is whether the distribution of results in the universe of papers differs significantly from that in the subset of relatively prominent papers selected here.

Finally, a key limitation of this survey is that I have focused almost exclusively on individual decision making. Thus, I have ignored equilibrium effects on wages, which may be relevant for large tax changes (see, e.g., Lee (2005), Keane and Roemer (2009)). And I have ignored issues of how aggregate labor supply elasticities may differ from individual level elasticities. Such issues were examined by Rogerson (1988) and have been pursued in much subsequent work. And I have largely ignored issues of family labor supply (see Apps and Rees (2009)). Proper treatment of these topics would be a substantial undertaking in itself.
Figure 1: The Piecewise Linear Budget Constraint Created by Progressive Taxation
Note: The budget constraint created by the program goes through points a, b, c, e. It is generated by the program grant level (G), the fixed cost of working (FC) and the program tax rate, which render the constraint non-convex. The line straight through the origin is the after-tax-wage line that would be the budget constraint in the hypothetical situation of a flat rate tax. The red dotted line shows the shift in the budget constraint when the program tax rate on earnings is reduced to 50%.
Figure 3: The Budget Constraint Created by Progressive Taxation in the Presence of Saving

Consumption

Segment (or tax Bracket) #2

Segment (or Tax Bracket) #1

$w_i(1-\tau_2)$

$w_i(1-\tau_1)$

$w_i(\tau_2-\tau_1)H_2$

$N_t + b_t$

H_{max}

H_2

$H=0$
Figure 4: Hours, Wages and Price of Time over the Life-Cycle

Note: HC denotes the return to an hour of work experience, in terms of increased present value of future wages. The opportunity cost of time is Wage + HC.
Figure 5: Distribution of Hicks Elasticity of Substitution Estimates

Note: The figure contains a frequency distribution of the 21 estimates of the Hicks elasticity of substitution discussed in this survey.
Table 3: Eklöf and Sacklén (2000) Analysis of Hausman vs. MaCurdy-Green-Paarsch (M-G-P)

<table>
<thead>
<tr>
<th>Wage Measure</th>
<th>Nonlabour Income Measure</th>
<th>Sample Selection Criteria</th>
<th>Hours Measure</th>
<th>Coefficient on: Wage</th>
<th>Marshall Elasticity</th>
<th>Income Effect</th>
<th>Hicks Elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-G-P</td>
<td>M-G-P</td>
<td>M-G-P</td>
<td>M-G-P</td>
<td>0.0</td>
<td>-0.011</td>
<td>0.000</td>
<td>-0.068</td>
</tr>
<tr>
<td>M-G-P</td>
<td>M-G-P</td>
<td>Hausman</td>
<td>M-G-P</td>
<td>0.0</td>
<td>-0.022</td>
<td>0.000</td>
<td>-0.136</td>
</tr>
<tr>
<td>M-G-P</td>
<td>Hausman</td>
<td>M-G-P</td>
<td>M-G-P</td>
<td>0.0</td>
<td>-0.079</td>
<td>0.000</td>
<td>-0.488</td>
</tr>
<tr>
<td>Hausman</td>
<td>M-G-P</td>
<td>M-G-P</td>
<td>M-G-P</td>
<td>0.0</td>
<td>-0.004</td>
<td>0.030</td>
<td>-0.025</td>
</tr>
<tr>
<td>Hausman</td>
<td>Hausman</td>
<td>M-G-P</td>
<td>M-G-P</td>
<td>10.3</td>
<td>-0.004</td>
<td>0.030</td>
<td>-0.025</td>
</tr>
<tr>
<td>Hausman</td>
<td>Hausman</td>
<td>Hausman</td>
<td>M-G-P</td>
<td>26.5</td>
<td>n/a</td>
<td>0.078</td>
<td>n/a</td>
</tr>
<tr>
<td>Hausman</td>
<td>Hausman</td>
<td>Hausman</td>
<td>M-G-P</td>
<td>26.9</td>
<td>-0.036</td>
<td>0.078</td>
<td>-0.222</td>
</tr>
<tr>
<td>Hausman</td>
<td>Hausman</td>
<td>Hausman</td>
<td>Hausman</td>
<td>16.4</td>
<td>-0.036</td>
<td>0.048</td>
<td>-0.222</td>
</tr>
<tr>
<td>Hausman’s Reported Results</td>
<td>0.2</td>
<td>0.2</td>
<td>-0.120</td>
<td>0.000</td>
<td>-0.740</td>
<td>0.740</td>
<td></td>
</tr>
</tbody>
</table>

Note: For the sake of comparability all elasticities and income effects are calculated using the mean wage of $6.18 and the mean hours 2,123 from Hausman (1981). In the authors’ attempt to replicate Hausman’s data set the corresponding figures are 6.21 and 2,148. The mean values of both hours and wages are a bit higher in the MaCurdy et al. data set, but this makes little difference for the calculations. For the random non-labour income coefficient, the table reports the median.

Table 4: How Frisch Elasticity Varies with Willingness to Substitute Utility Over Time

<table>
<thead>
<tr>
<th>σ</th>
<th>Frisch Elasticity</th>
<th>Changes in Hours</th>
<th>Changes in Consumption</th>
<th>Changes in Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Hours(1)</td>
<td>Hours(2)</td>
<td>C(1)</td>
</tr>
<tr>
<td>0.0</td>
<td>2.00</td>
<td>+1.03%</td>
<td>-0.96%</td>
<td>+0.97%</td>
</tr>
<tr>
<td>-0.5</td>
<td>1.40</td>
<td>+0.82%</td>
<td>-0.58%</td>
<td>+1.18%</td>
</tr>
<tr>
<td>-1.0</td>
<td>1.25</td>
<td>+0.76%</td>
<td>-0.48%</td>
<td>+1.24%</td>
</tr>
<tr>
<td>-2.0</td>
<td>1.14</td>
<td>+0.73%</td>
<td>-0.41%</td>
<td>+1.27%</td>
</tr>
<tr>
<td>-5.0</td>
<td>1.06</td>
<td>+0.70%</td>
<td>-0.36%</td>
<td>+1.30%</td>
</tr>
<tr>
<td>-10.0</td>
<td>1.03</td>
<td>+0.69%</td>
<td>-0.34%</td>
<td>+1.31%</td>
</tr>
<tr>
<td>-40.0</td>
<td>1.01</td>
<td>+0.68%</td>
<td>-0.33%</td>
<td>+1.32%</td>
</tr>
</tbody>
</table>
Table 5: Effects of a 10% Tax on Earnings on Labor Supply at Various Ages

<table>
<thead>
<tr>
<th>Age</th>
<th>Pure Tax</th>
<th>Tax plus Lump Sum</th>
<th>Redistribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>-0.7%</td>
<td></td>
<td>-3.2%</td>
</tr>
<tr>
<td>30</td>
<td>-0.7%</td>
<td></td>
<td>-3.3%</td>
</tr>
<tr>
<td>40</td>
<td>-0.9%</td>
<td></td>
<td>-4.2%</td>
</tr>
<tr>
<td>45</td>
<td>-1.2%</td>
<td></td>
<td>-5.7%</td>
</tr>
<tr>
<td>50</td>
<td>-2.1%</td>
<td></td>
<td>-8.7%</td>
</tr>
<tr>
<td>60</td>
<td>-9.1%</td>
<td></td>
<td>-20.0%</td>
</tr>
<tr>
<td>20-65 (Total Hours)</td>
<td>-2.0%</td>
<td></td>
<td>-6.6%</td>
</tr>
</tbody>
</table>

Table 6: Summary Results for Welfare Losses From Proportional Income Taxes

<table>
<thead>
<tr>
<th>γ</th>
<th>Uncompensated</th>
<th>Compensated</th>
<th>Welfare loss (C*)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>elasticity</td>
<td>elasticity</td>
<td>f(P) = log(P)</td>
</tr>
<tr>
<td>η = -0.75</td>
<td>0.25 0.25</td>
<td>0.811</td>
<td>13.35</td>
</tr>
<tr>
<td></td>
<td>0.5 0.176</td>
<td>0.698</td>
<td>11.42</td>
</tr>
<tr>
<td></td>
<td>1 0.133</td>
<td>0.530</td>
<td>8.92</td>
</tr>
<tr>
<td></td>
<td>2 0.088</td>
<td>0.350</td>
<td>6.22</td>
</tr>
<tr>
<td></td>
<td>4 0.052</td>
<td>0.206</td>
<td>3.87</td>
</tr>
<tr>
<td>η = -0.5</td>
<td>0.25 0.532</td>
<td>1.054</td>
<td>12.16</td>
</tr>
<tr>
<td></td>
<td>0.5 0.445</td>
<td>0.884</td>
<td>11.38</td>
</tr>
<tr>
<td></td>
<td>1 0.318</td>
<td>0.633</td>
<td>9.30</td>
</tr>
<tr>
<td></td>
<td>2 0.197</td>
<td>0.392</td>
<td>6.43</td>
</tr>
<tr>
<td></td>
<td>4 0.110</td>
<td>0.220</td>
<td>3.88</td>
</tr>
</tbody>
</table>

Note: All results are for α = .008. C* = percentage consumption gain needed to compensate for tax distortion (starting from proportional tax world).
Table 7: Summary of Elasticity Estimates for Males

<table>
<thead>
<tr>
<th>Authors of Study</th>
<th>Year</th>
<th>Marshall</th>
<th>Hicks</th>
<th>Frisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kosters</td>
<td>1969</td>
<td>-0.09</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Ashenfelter-Heckman</td>
<td>1973</td>
<td>-0.16</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Boskin</td>
<td>1973</td>
<td>-0.07</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>Hall</td>
<td>1973</td>
<td>n/a</td>
<td>0.45</td>
<td></td>
</tr>
<tr>
<td>8 British studies(^a)</td>
<td>1976-83</td>
<td>-0.16</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>8 NIT studies(^a)</td>
<td>1977-84</td>
<td>0.03</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Burtless-Hausman</td>
<td>1978</td>
<td>0.00</td>
<td>.07-.13</td>
<td></td>
</tr>
<tr>
<td>Wales-Woodland</td>
<td>1979</td>
<td>0.14</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>Hausman</td>
<td>1981</td>
<td>0.00</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>Blomquist</td>
<td>1983</td>
<td>0.08</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Blomquist-Hansson-Busewitz</td>
<td>1990</td>
<td>0.12</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>MaCurdy-Green-Paarsch</td>
<td>1990</td>
<td>0.00</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>Triest</td>
<td>1990</td>
<td>0.05</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>Van Soest-Woittiez-Kapteyn</td>
<td>1990</td>
<td>0.19</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Ecklof-Sacklen</td>
<td>2000</td>
<td>0.05</td>
<td>0.27</td>
<td></td>
</tr>
<tr>
<td>Dynamic Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MaCurdy</td>
<td>1981</td>
<td>0.08(^b)</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>MaCurdy</td>
<td>1983</td>
<td>0.70</td>
<td>1.22</td>
<td>6.25</td>
</tr>
<tr>
<td>Browning-Deaton-Irish</td>
<td>1985</td>
<td></td>
<td>0.09</td>
<td></td>
</tr>
<tr>
<td>Blundell-Walker</td>
<td>1986</td>
<td>-0.07</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Altonji(^c)</td>
<td>1986</td>
<td>-0.24</td>
<td>0.11</td>
<td>0.17</td>
</tr>
<tr>
<td>Altonji(^d)</td>
<td>1986</td>
<td></td>
<td></td>
<td>0.31</td>
</tr>
<tr>
<td>Bover</td>
<td>1989</td>
<td>0.00</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Altug-Miller</td>
<td>1990</td>
<td></td>
<td>0.14</td>
<td></td>
</tr>
<tr>
<td>Angrist</td>
<td>1991</td>
<td></td>
<td>0.63</td>
<td></td>
</tr>
<tr>
<td>Ziliak-Kniesner</td>
<td>1999</td>
<td>0.12</td>
<td>0.13</td>
<td>0.16</td>
</tr>
<tr>
<td>Pistaferri</td>
<td>2003</td>
<td>0.51(^b)</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>Imai-Keane</td>
<td>2004</td>
<td>0.20(^e)</td>
<td>0.66(^e)</td>
<td>.30-2.75(^f)</td>
</tr>
<tr>
<td>Ziliak-Kniesner</td>
<td>2005</td>
<td>-0.47</td>
<td>0.33</td>
<td>0.54</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.04</td>
<td>0.30</td>
<td>0.83</td>
</tr>
</tbody>
</table>

\(^a\) = Average of the studies surveyed by Pencavel(1986)
\(^b\) = Effect of surprise permanent wage increase
\(^c\) = Using MaCurdy Method #1
\(^d\) = Using first difference hours equation
\(^e\) = Approximation of responses to transitory wage increase based on model simulation
\(^f\) = Age range

Note: Where ranges are reported mid-point is used to take means.
Table 8: Summary of Elasticity Estimates for Women

<table>
<thead>
<tr>
<th>Authors of Study</th>
<th>Year</th>
<th>Marshall</th>
<th>Hicks</th>
<th>Frisch</th>
<th>Uncompensated (Dynamic)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static, Life-Cycle and Life-Cycle Consistent Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cogan</td>
<td>1981</td>
<td>0.89</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heckman-Macurdy</td>
<td>1982</td>
<td></td>
<td>2.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blundell-Walker</td>
<td>1986</td>
<td>-0.20</td>
<td>0.01</td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>Blundell-Duncan-Meghir</td>
<td>1998</td>
<td>0.17</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kimmel-Kniesner</td>
<td>1998</td>
<td></td>
<td></td>
<td>3.05b</td>
<td></td>
</tr>
<tr>
<td>Moffitt</td>
<td>1984</td>
<td></td>
<td></td>
<td></td>
<td>1.25</td>
</tr>
<tr>
<td>Dynamic Structural Models</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eckstein-Wolpin</td>
<td>1989</td>
<td></td>
<td></td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>Van der Klauuw</td>
<td>1996</td>
<td></td>
<td></td>
<td>3.6</td>
<td></td>
</tr>
<tr>
<td>Francesconi</td>
<td>2002</td>
<td></td>
<td></td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>Keane-Wolpin</td>
<td>2009</td>
<td></td>
<td></td>
<td>2.8</td>
<td></td>
</tr>
</tbody>
</table>

a = Elasticity conditional on positive work hours
b = Sum of elasticities on extensive and intensive margins
References

